The checkpoint clamp activates Mec1 kinase during initiation of the DNA damage checkpoint.

Mol Cell

Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

Published: December 2006

Yeast Mec1/Ddc2 protein kinase, the ortholog of human ATR/ATRIP, plays a central role in the DNA damage checkpoint. The PCNA-like clamp Rad17/Mec3/Ddc1 (the 9-1-1 complex in human) and its loader Rad24-RFC are also essential components of this signal transduction pathway. Here we have studied the role of the clamp in regulating Mec1, and we delineate how the signal generated by DNA lesions is transduced to the Rad53 effector kinase. The checkpoint clamp greatly activates the kinase activity of Mec1, but only if the clamp is appropriately loaded upon partial duplex DNA. Activated Mec1 phosphorylates the Ddc1 and Mec3 subunits of the clamp, the Rad24 subunit of the loader, and the Rpa1 and Rpa2 subunits of RPA. Phosphorylation of Rad53, and of human PHAS-1, a nonspecific target, also requires a properly loaded clamp. Phosphorylation and binding studies with individual clamp subunits indicate that the Ddc1 subunit mediates the functional interactions with Mec1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1850967PMC
http://dx.doi.org/10.1016/j.molcel.2006.11.027DOI Listing

Publication Analysis

Top Keywords

checkpoint clamp
8
dna damage
8
damage checkpoint
8
clamp
7
mec1
5
checkpoint
4
clamp activates
4
activates mec1
4
kinase
4
mec1 kinase
4

Similar Publications

Article Synopsis
  • * EAAT2 dysfunction is linked to several neurodegenerative diseases, including Alzheimer's and Parkinson's, with specific mutations in LRRK2, particularly Gly2019Ser, reducing EAAT2 expression.
  • * This study reveals that LRRK2 is essential for the stability and function of EAAT2, suggesting its role in preventing neuronal damage from excessive excitatory signals, but does not affect the function of other NTTs.
View Article and Find Full Text PDF

During meiosis, programmed DNA double-strand breaks (DSBs) are formed by the topoisomerase-like enzyme, Spo11, activating the DNA damage response (DDR) kinase Mec1ATR via the checkpoint clamp loader, Rad24RAD17. At single loci, loss of Mec1 and Rad24 activity alters DSB formation and recombination outcome, but their genome-wide roles have not been examined in detail. Here, we utilise two strategies-deletion of the mismatch repair protein, Msh2, and control of meiotic prophase length via regulation of the Ndt80 transcription factor-to help characterise the roles Mec1 and Rad24 play in meiotic recombination by enabling genome-wide mapping of meiotic progeny.

View Article and Find Full Text PDF

A critical cell cycle checkpoint for most bacteria is the onset of constriction when the septal peptidoglycan synthesis starts. According to the current understanding, the arrival of FtsN to midcell triggers this checkpoint in Escherichia coli. Recent structural and in vitro data suggests that recruitment of FtsN to the Z-ring leads to a conformational switch in actin-like FtsA, which links FtsZ protofilaments to the cell membrane and acts as a hub for the late divisome proteins.

View Article and Find Full Text PDF

Ganciclovir (GCV) is a clinically important drug as it is used to treat viral infections. GCV is incorporated into the DNA during replication, where it interferes with subsequent replication on GCV-incorporated templates. However, the effects of GCV on the host genome and the mechanisms underlying cellular tolerance to GCV remain unclear.

View Article and Find Full Text PDF

Blocking CTLA-4 promotes pressure overload-induced heart failure via activating Th17 cells.

FASEB J

August 2024

Departments of Cardiology and Critical Care Medicine, NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, The First Affiliated Hospital of Harbin Medical University, Harbin, China.

Article Synopsis
  • Scientists studied how a special antibody, called anti-CTLA-4, affects the heart when treating cancer, and found it can make heart problems worse.
  • They used mice with heart issues and gave them this antibody, which led to even more heart damage and inflammation.
  • The research suggests that blocking certain signals in the body might help prevent heart problems caused by this cancer treatment.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!