West Nile virus (WNV), a mosquito-borne member of Flaviviridae, is a human pathogen causing widespread disease for which there is no vaccine or chemotherapy. The two-component viral serine protease consists of a heterodimeric complex between the hydrophilic domain of the cofactor, NS2B (NS2BH) and the protease domain (NS3-pro). The protease is essential for polyprotein processing followed by assembly of viral replicase and genome replication. Therefore, the protease is an excellent target for development of antiviral therapeutics. Here, we report the expression in Escherichia coli, purification, and characterization of biochemical and kinetic properties of the WNV protease. Furthermore, we show that the WNV and the dengue virus type 2 (DENV-2) proteases are inhibited by aprotinin with inhibitor constants of 0.16 and 0.026 microM, respectively. Molecular modeling of the WNV protease/aprotinin complex, based on the known crystal structures of the WNV NS2BH-N3pro and aprotinin, suggest a potentially strong interaction between the P2 Lys and the protease activator peptide, NS2BH. This conclusion based on molecular modeling is in agreement with our data of a higher k(cat)/Km value with the substrate, Boc-Gly-Lys-Arg-MCA than the Boc-Gly-Arg-Arg-MCA and is also consistent with the results of an earlier study that were based on substrate-based inhibitor peptides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biocel.2006.10.025 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!