The norepinephrine (NE) transporter (NET) terminates noradrenergic signaling by clearing released NE at synapses. The activity of NET can be rapidly regulated by depolarization and receptor activation via Ca2+ and kinase/phosphatase-linked pathways. The SNARE protein syntaxin 1A (SYN1A) interacts with NET and influences transporter surface trafficking and catalytic activity. In this study, we establish a link between changes in intracellular Ca2+ and SYN1A/NET interactions. SYN1A influenced NE transport only in the presence of Ca2+ in brain cortical synaptosomes. Although NET/SYN1A associations were sensitive to manipulations of Ca2+ in CHO cells, in vitro binding experiments using purified NET and SYN1A fusion proteins demonstrated a lack of direct Ca2+ sensitivity. Disruption of NET/SYN1A interaction abolished inhibition of NE transport by phorbol ester (PMA) to activate protein kinase C (PKC), but had no effect on transport inhibition by the Ca2+ calmodulin kinase (CaMK) inhibitor KN93. Furthermore, PMA enhanced Ca2+-dependent modulation of NE transport in synaptosomes. Our data reveal roles for SYN1A in the Ca2+-dependent regulation of NET, likely reliant on regulation by PKC signaling, but independent of CaMK.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1847414 | PMC |
http://dx.doi.org/10.1016/j.mcn.2006.11.007 | DOI Listing |
J Clin Med
January 2025
Department of Medical Specialities I, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania.
Neurogenic orthostatic hypotension (NOH) is a significant non-motor manifestation of Parkinson's disease (PD), that substantially affects patient disability and has a powerful impact on the quality of life of PD patients, while also contributing to increased healthcare costs. This narrative review aims to summarize key insights into the diagnosis and management of NOH in individuals with PD. For diagnosing NOH, a recently introduced and valuable metric is the ΔHr/ΔSBP index.
View Article and Find Full Text PDFBrain Res Bull
January 2025
Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Electronic address:
Background: Increasing evidence has documented cortical involvement at all stages of PD. The local vulnerabilities within certain brain regions in PD have been previously demonstrated, whereas its underlying genetic and neurochemical factors remain unclear. This study aims to investigate the spatial spectrum of cortical atrophy in Parkinson's disease (PD) and link these variances in gray matter properties and curvature respectively to putative molecular pathways and neurotransmitter factors.
View Article and Find Full Text PDFMol Divers
January 2025
School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, People's Republic of China.
Parkinson's disease (PD) is a chronic neurodegenerative disorder marked by dopaminergic neuron degeneration in the substantia nigra. Emerging evidence suggests vitamin D3 (VD) plays a therapeutic role in PD, but its precise molecular mechanisms remain unclear. This study employed network pharmacology and bioinformatics to identify VD's hub targets and related pathways.
View Article and Find Full Text PDFDis Mon
January 2025
NYU Grossman School of Medicine, Department of Population Health, New York, NY, USA.
3,4-methylenedioxymethamphetamine (MDMA; commonly referred to as "ecstasy" or "molly") is a substituted amphetamine drug that is used recreationally for its acute psychoactive effects, including euphoria and increased energy, as well as prosocial effects such as increased empathy and feelings of closeness with others. Acute adverse effects can include hyperthermia, dehydration, bruxism, and diaphoresis. Post-intoxication phenomena may include insomnia, anhedonia, anxiety, depression, and memory impairment, which can persist for days following drug cessation.
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
January 2025
Department of Molecular Biology and Genetics, Hitit University, Corum, Türkiye.
The norepinephrine transporter (NET) is a key regulator of noradrenergic neurotransmission and homeostasis, regulating the norepinephrine levels in the brain and peripheral tissues. hNET is a major target in neuropsychiatric disorders such as major depressive disorder, autonomic dysfunction, and attention deficit hyperactivity disorder (ADHD). The human norepinephrine transporter gene (, ) contains 504 missense single nucleotide polymorphisms (SNPs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!