A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modeling the charge distribution at metal sites in proteins for molecular dynamics simulations. | LitMetric

Modeling the charge distribution at metal sites in proteins for molecular dynamics simulations.

J Struct Biol

Center for Molecular Modeling and Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104-6323, USA.

Published: March 2007

Almost half of the proteome of living organisms is constituted of metalloproteins. Unfortunately, the ability of the current generation of molecular dynamics pairwise-additive forcefields to properly describe metal pockets is severely lacking due to the intrinsic difficulty of handling polarization and charge transfer contributions. In order to improve the description of metalloproteins, a simple reparameterization strategy is proposed herein that does not involve artificial constraints. Specifically, a non-bonded quantum mechanical-based model is used to capture the mean polarization and charge transfer contributions to the interatomic forces within the metal site. The present approach is demonstrated to provide enough accuracy to maintain the integrity of the metal pocket for a variety of metalloproteins during extended (multi-nanosecond) molecular dynamics simulations. The method enables the sampling of small conformational changes and the relaxation of local frustrations in NMR structures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jsb.2006.10.019DOI Listing

Publication Analysis

Top Keywords

molecular dynamics
12
dynamics simulations
8
polarization charge
8
charge transfer
8
transfer contributions
8
modeling charge
4
charge distribution
4
metal
4
distribution metal
4
metal sites
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!