The proof of efficacy of phytopreparations and the determination of their mode of action are permanent challenges for an evidence-based phytotherapy. The technology platform of genomics, proteomics and metabolomics ("-omic-" technologies) are high-throughput technologies. They increase substantially the number of proteins/genes that can be detected simultaneously and have the potential to relate complex mixtures to complex effects in the form of gene/protein expression profiles. Provided that phytopreparation-specific signatures in the form of gene/protein expression profiles can be developed, these technologies will be useful for the chemical and pharmacological standardization and the proof of the toxicological potential of a plant extract. Over a long-term perspective they may economize the proof of efficacy, the determination of the mode of action of phytomedicines and allow to investigate herbal extracts without prominent active principle(s). The application of this genomics revealed already that gene expression profiles induced by single drugs and the ones induced by the combination of the same drugs can be entirely different. These results make the information of the mode of action of isolated "active principles/lead substances" of phytopreparations questionable. The application of the "-omic-" technologies may lead to a change of paradigms towards the application of complex mixtures in medicine and open the new field of phytogenomics, -proteomics and -metabolomics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phymed.2006.11.011DOI Listing

Publication Analysis

Top Keywords

"-omic-" technologies
12
mode action
12
expression profiles
12
application "-omic-"
8
proof efficacy
8
determination mode
8
complex mixtures
8
form gene/protein
8
gene/protein expression
8
technologies
5

Similar Publications

Spatiotemporal Omics-Refining the landscape of precision medicine.

Life Med

October 2022

BGI Research-Southwest, BGI, Chongqing 401329, China.

Current streamline of precision medicine uses histomorphological and molecular information to indicate individual phenotypes and genotypes to achieve optimal outcome of treatment. The knowledge of detected mutations and alteration can hardly describe molecular interaction and biological process which can finally be manifested as a disease. With molecular diagnosis revising the modalities of disease, there is a trend in precision medicine to apply multiomic and multidimensional information to decode tumors, regarding heterogeneity, pathogenesis, prognosis, etc.

View Article and Find Full Text PDF

Most diffuse large B-cell lymphoma (DLBCL) patients treated with immunotherapies such as bispecific antibodies (BsAb) or chimeric antigen receptor (CAR) T cells fail to achieve durable treatment responses, underscoring the need for a deeper understanding of mechanisms that regulate the immune environment and response to treatment. Here, an integrative, multi-omic approach was applied to multiple large independent datasets in order to characterize DLBCL immune environments, and to define their association with tumor cell-intrinsic genomic alterations and outcomes to CD19-directed CAR T-cell and CD20 x CD3 BsAb therapies. This approach effectively segregated DLBCLs into four immune quadrants (IQ) defined by cell-of-origin and immune-related gene set expression scores.

View Article and Find Full Text PDF

A Recursive Model Approach to Include Epigenetic Effects in Genetic Evaluations Using Simulated DNA Methylation Effects.

J Anim Breed Genet

January 2025

Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), CSIC, Madrid, Spain.

The advancement of epigenetics has highlighted DNA methylation as an intermediate-omic influencing gene regulation and phenotypic expression. With emerging technologies enabling the large-scale and affordable capture of methylation data, there is growing interest in integrating this information into genetic evaluation models for animal breeding. This study used methylome information from six dairy cows to simulate the methylation profile of 13,183 genotyped animals.

View Article and Find Full Text PDF

Improving Geldanamycin Production in Through UV Mutagenesis of Protoplast.

Microorganisms

January 2025

Fujian Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, 25 Jinbu Road, Fuzhou 350007, China.

Geldanamycin, a benzoquinone ansa antibiotic, has been extensively applied in medical, agricultural, and health research areas due to its antitumor, antifungal, herbicidal, and antiradiation effects. In this study, an improvement of geldanamycin production by FIM18-0592 was first performed by protoplasts combined with UV mutagenesis and ribosome engineering technology, respectively. The results showed that strains induced by UV mutagenesis of protoplasts were superior to protoplasts treated with erythromycin in terms of the positive variability, average relative titer, and maximum relative titer, with values of 51.

View Article and Find Full Text PDF

This review provides a comprehensive overview of the evolving role of minimal residual disease (MRD) for patients with Colon Cancer (CC). Currently, the standard of care for patients with non-metastatic CC is adjuvant chemotherapy (ACT) for all patients with stage III and high-risk stage II CC following surgical intervention. Despite a 5-20% improvement in long-term survival outcomes, this approach also results in a significant proportion of patients receiving ACT without any therapeutic benefit and being unnecessarily exposed to the risks of secondary side effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!