The p53 network: p53 and its downstream genes.

Colloids Surf B Biointerfaces

College of Bioinformation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.

Published: March 2007

The tumor-suppressor gene p53 and its downstream genes consist of a complicated gene network. p53 is a key molecular node in the network, which is activated in response to several cellular signals resulting in the maintenance of genetic stability. Several cellular signals may activate the p53 network. When the expression of P53 is elevated, P53-MDM2 module and the ubiquitin system can accurately regulate the expression level of P53. P53 can bind to specific DNA sequence, activate its downstream genes expression, and control cell-cycle arrest, DNA repair, and apoptosis. Elucidating the function of p53 gene network will help understand the interaction mechanisms of p53 and its downstream genes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2006.11.003DOI Listing

Publication Analysis

Top Keywords

downstream genes
16
p53 downstream
12
p53
10
p53 network
8
network p53
8
gene network
8
cellular signals
8
downstream
4
genes
4
genes tumor-suppressor
4

Similar Publications

A rare haplotype of the GJD3 gene segregating in familial Meniere's disease interferes with connexin assembly.

Genome Med

January 2025

Otology & Neurotology Group CTS495, Instituto de Investigación Biosanitario, Ibs.GRANADA, Universidad de Granada, 18071, Granada, Spain.

Background: Familial Meniere's disease (FMD) is a rare polygenic disorder of the inner ear. Mutations in the connexin gene family, which encodes gap junction proteins, can also cause hearing loss, but their role in FMD is largely unknown.

Methods: We retrieved exome sequencing data from 94 individuals in 70 Meniere's disease (MD) families.

View Article and Find Full Text PDF

Advancements in bioinformatic tools and breakthroughs in high throughput RNA sequencing have unveiled the potential role of non-coding RNAs in influencing the overall expression of disease-responsive genes. Owing to the increasing need to develop resilient crop varieties against environmental constraints, our study explores the functional relationship of various non-coding RNAs in wheat during leaf rust pathogenesis. MicroRNAs (miRNAs) and circular RNAs (circRNAs) were retrieved from SAGE and RNA-Seq libraries, respectively, in the susceptible (HD2329) and resistant (HD2329 + Lr28) wheat Near-Isogenic Lines (NILs).

View Article and Find Full Text PDF

Herpesviruses mimic zygotic genome activation to promote viral replication.

Nat Commun

January 2025

Institute of Virology, University Medical Center, and Faculty of Medicine, Albert-Ludwig-University Freiburg, Freiburg, Germany.

Zygotic genome activation (ZGA) is crucial for maternal to zygotic transition at the 2-8-cell stage in order to overcome silencing of genes and enable transcription from the zygotic genome. In humans, ZGA is induced by DUX4, a pioneer factor that drives expression of downstream germline-specific genes and retroelements. Here we show that herpesviruses from all subfamilies, papillomaviruses and Merkel cell polyomavirus actively induce DUX4 expression to promote viral transcription and replication.

View Article and Find Full Text PDF

Background: Postoperative delirium (POD) poses significant clinical challenges regarding its diagnosis and treatment. Identifying biomarkers that can predict and diagnose POD is crucial for improving patient outcomes.

Methods: To explore potential biomarkers for POD, we conducted bulk RNA sequencing (bulk-seq) on peripheral blood samples from POD patients and healthy controls.

View Article and Find Full Text PDF

Therapeutic effects of CGS21680, a selective A receptor agonist, via BDNF-related pathways in R106W mutation Rett syndrome model.

Biomed Pharmacother

January 2025

College of Veterinary Medicine, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea. Electronic address:

Rett syndrome (RTT) is a neurological disorder caused by a mutation in the X-linked methyl-CpG binding protein 2 (MECP2), leading to cognitive and motor skill regression. Therapeutic strategies aimed at increasing brain-derived neurotrophic factor (BDNF) levels have been reported; however, BDNF treatment has limitations, including the inability to penetrate the blood-brain barrier, a short half-life, and potential for adverse effects when administered via intrathecal injection, necessitating novel therapeutic approaches. In this study, we focused on the adenosine A receptor (AR), which modulates BDNF and its downstream pathways, and investigated the therapeutic potential of CGS21680, an AR agonist, through in vitro and in vivo studies using R106W RTT model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!