The influence of the topology on the asymptotic states of a network of interacting chemical species has been studied by simulating its time evolution. Random and scale-free networks have been designed to support relevant features of activation-deactivation reactions networks (mapping signal transduction networks) and the system of ordinary differential equations associated to the dynamics has been numerically solved. We analysed stationary states of the dynamics as a function of the network's connectivity and of the distribution of the chemical species on the network; we found important differences between the two topologies in the regime of low connectivity. In particular, only for low connected scale-free networks it is possible to find zero activity patterns as stationary states of the dynamics which work as signal off-states. Asymptotic features of random and scale-free networks become similar as the connectivity increases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtbi.2006.10.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!