Exploring the mechanism of protein synthesis with modified substrates and novel intermediate mimics.

Blood Cells Mol Dis

Laboratory of Chemistry and Cell Biology, Rockefeller University, New York, NY 10021, USA.

Published: April 2007

Translation, the synthesis of proteins from individual amino acids based on genetic information, is a cornerstone biological process. During ribosomal protein synthesis, new peptide bonds form through aminolysis of the peptidyl-tRNA ester bond by the alpha-amino group of the A-site amino acid. The rate of this reaction is accelerated at least 10(7)-fold in the ribosome, but the catalytic mechanism has remained controversial. We have used a combination of synthetic chemistry, biochemical, and structural biology approaches to characterize the mechanism of the peptidyl transfer reaction and the configuration of the reaction's tetrahedral intermediate. Substitution of the P-site tRNA A76 2' OH with 2' H or 2' F results in at least a 10(6)-fold reduction in the rate of peptide bond formation, but does not affect binding of the modified substrates. This indicates that the 2'-OH is essential to the reaction through participation in substrate assisted catalysis. A series of novel mimics of the tetrahedral intermediate were examined to distinguish between possible regio- and stereoisomeric forms of the intermediate. The determination of these parameters has important implications for the configuration of the substrates and intermediate within the ribosomal active site, and thus which functional groups are properly positioned to play various roles in promoting the reaction. Our results contribute to an emerging model of the peptidyl transfer reaction in which the ribosomal active site positions the substrates in an orientation specifically designed to promote the reaction, wherein the A76 2'-OH serves as a proton shuttle to enable critical proton transfers in the formation of the final peptide product.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1810234PMC
http://dx.doi.org/10.1016/j.bcmd.2006.11.002DOI Listing

Publication Analysis

Top Keywords

protein synthesis
8
modified substrates
8
peptidyl transfer
8
transfer reaction
8
tetrahedral intermediate
8
ribosomal active
8
active site
8
reaction
6
intermediate
5
exploring mechanism
4

Similar Publications

Protocol for semisynthesis of histone H4 with site-specific modifications using irreversible sortase-mediated ligation.

STAR Protoc

January 2025

Department of Chemistry, School of Science, Westlake University, Hangzhou, Zhejiang Province 310030, China; Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province 310024, China. Electronic address:

Post-translational modifications (PTMs) of histone H4 play significant roles in the regulation of chromatin status. Here, we present a protocol for semisynthesis of histone H4 by sortase-mediated ligation (SML). We describe steps for solid-phase peptide synthesis of H4R40C(1-42), recombinant expression and purification of H4(41-102), expression and purification of eSrt(2A-9), and preparation of acrylamidine.

View Article and Find Full Text PDF

Background: Male EBP disorder with neurologic defects (MEND syndrome) is an extremely rare disorder with a prevalence of less than 1/1,000,000 individuals worldwide. It is inherited as an X-linked recessive disorder caused by impaired sterol biosynthesis due to nonmosaic hypomorphic EBP variants. MEND syndrome is characterized by variable clinical manifestations including intellectual disability, short stature, scoliosis, digital abnormalities, cataracts, and dermatologic abnormalities.

View Article and Find Full Text PDF

ATP Regeneration from Pyruvate in the PURE System.

ACS Synth Biol

January 2025

Centre for Engineering Biology, Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, U.K.

The "Protein synthesis Using Recombinant Elements" ("PURE") system is a minimal biochemical system capable of carrying out cell-free protein synthesis using defined enzymatic components. This study extends PURE by integrating an ATP regeneration system based on pyruvate oxidase, acetate kinase, and catalase. The new pathway generates acetyl phosphate from pyruvate, phosphate, and oxygen, which is used to rephosphorylate ATP .

View Article and Find Full Text PDF

Obesity-induced muscle alterations, such as inflammation, metabolic dysregulation, and myosteatosis, lead to a decline in muscle mass and function, often resulting in sarcopenic obesity. Currently, there are no definitive treatments for sarcopenic obesity beyond lifestyle changes and dietary supplementation. Feruloylacetone (FER), a thermal degradation product of curcumin, and its analog demethoxyferuloylacetone (DFER), derived from the thermal degradation of bisdemethoxycurcumin, have shown potential antiobesity effects in previous studies.

View Article and Find Full Text PDF

Misfolding and accumulation of amyloid-β (Aβ) in the brains of patients with Alzheimer's disease (AD) lead to neuronal loss through various mechanisms, including the downregulation of eukaryotic elongation factor 2 (EEF2) protein synthesis signaling. This study investigated the neuroprotective effects of indole and coumarin derivatives on Aβ folding and EEF2 signaling using SH-SY5Y cells expressing Aβ-green fluorescent protein (GFP) folding reporter. Among the tested compounds, two indole (NC009-1, -6) and two coumarin (LM-021, -036) derivatives effectively reduced Aβ misfolding and associated reactive oxygen species (ROS) production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!