Synaptosomes and plasma membranes obtained from rat brain display ectoenzymatic hydrolytic activity responsible for hydrolysis of the neurotransmitter/neuroregulatory nucleotides diadenosine polyphosphates. Intact synaptosomes and plasma and synaptic membranes isolated by sucrose-gradient ultracentrifugation from several brain regions (hypothalamus, hippocampus, temporal cortex, frontal cortex striatum and cerebellum) degraded the fluorogenic substrates diethenoadenosine polyphosphates up to ethenoadenosine as by-product. Purified ectoenzyme cleaved substrates always releasing the mononucleotide moieties ethenoadenosine 5'-monophosphate and the corresponding ethenoadenosine (n-1) 5'-phosphate. Ectoenzymatic hydrolysis reached maximal activity at pH 9.0 (pH range 6.5-9.0) and was activated by Ca(2+) and Mg(2+) ions, with maximal effects around 2.0 mM cation. EDTA drastically reduced activity and Zn(2+) was required for enzyme reactivation. Hydrolysis of substrates followed hyperbolic kinetics with K(m) values in the 3-10 microM range. Diadenosine polyphosphates and heparin behaved as competitive inhibitors in the enzymatic hydrolysis of diethenoadenosine polyphosphates and AMP, ATP, alpha,beta-methyleneADP, ADPbetaS ATPgammaS, beta,gamma-methyleneATP, suramin and diethyl pyrocarbonate were also inhibitors. Ectoenzymatic activity shared the typical characteristics of members of the ecto-nucleotide pyrophosphatase/phosphodiesterase (E-NPP) family and inhibition data suggest that NPP1 ectoenzyme is involved in the cleavage of extracellular diadenosine polyphosphates in brain. Synaptic membranes from cerebellum, hypothalamus and hippocampus presented the highest activities and no activity differences were observed between young and aged animals. However, plasma membranes showed a more homogeneous distribution of ectoenzymatic activity but a general increase was detected in aged animals. Enhancement of ectoenzymatic diadenosine polyphosphate cleaving activity found in plasma membranes from old animals could play a deleterious role in aged brain by limiting neuroprotective effects reported for extracellular diadenosine tetraphosphate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuint.2006.11.006DOI Listing

Publication Analysis

Top Keywords

diadenosine polyphosphates
16
plasma membranes
12
activity
8
synaptosomes plasma
8
synaptic membranes
8
hypothalamus hippocampus
8
diethenoadenosine polyphosphates
8
ectoenzymatic activity
8
extracellular diadenosine
8
aged animals
8

Similar Publications

When stressed, cells synthesize di-adenosine polyphosphates (ApA), and cellular organisms also express proteins that degrade these compounds to release ATP. Most of these proteins are members of the nudix hydrolase superfamily, and several are involved in bacterial pathogenesis, neurodevelopment, and cancer. The goal of this project is to assist in the discovery of inhibitors of these enzymes that could be used to study ApA function and the cellular role of these nudix enzymes.

View Article and Find Full Text PDF

Inositol pyrophosphates are eukaryotic signaling molecules that have been recently identified as key regulators of plant phosphate sensing and homeostasis. Given the importance of phosphate to current and future agronomic practices, we sought to design plants, which could be used to sequester phosphate, as a step in a phytoremediation strategy. To achieve this, we expressed diadenosine and diphosphoinositol polyphosphate phosphohydrolase (DDP1), a yeast (Saccharomyces cerevisiae) enzyme demonstrated to hydrolyze inositol pyrophosphates, in Arabidopsis thaliana and pennycress (Thlaspi arvense), a spring annual cover crop with emerging importance as a biofuel crop.

View Article and Find Full Text PDF
Article Synopsis
  • Inositol pyrophosphates (PP-InsPs) are important cellular messengers in plants that impact various functions like immunity and nutrient sensing, and their levels are sensitive to phosphate availability.
  • This study investigates MpDDP1, a specific enzyme from liverworts, found to regulate these PP-InsPs, revealing its role in the hydrolysis of these messengers in different organisms.
  • The findings suggest that MpDDP1 is crucial for maintaining PP-InsP balance and influences plant growth and reproduction.
View Article and Find Full Text PDF

Regulatory cystathionine β-synthase (CBS) domains are widespread in proteins; however, difficulty in structure determination prevents a comprehensive understanding of the underlying regulation mechanism. Tetrameric microbial inorganic pyrophosphatase containing such domains (CBS-PPase) is allosterically inhibited by AMP and ADP and activated by ATP and cell alarmones diadenosine polyphosphates. Each CBS-PPase subunit contains a pair of CBS domains but binds cooperatively to only one molecule of the mono-adenosine derivatives.

View Article and Find Full Text PDF

Adenylate kinase (AK) plays a crucial role in the metabolic monitoring of cellular adenine nucleotide homeostasis by catalyzing the reversible transfer of a phosphate group between ATP and AMP, yielding two ADP molecules. By regulating the nucleotide levels and energy metabolism, the enzyme is considered a disease modifier and potential therapeutic target for various human diseases, including malignancies and inflammatory and neurodegenerative disorders. However, lacking approved drugs targeting AK hinders broad studies on this enzyme's pathological importance and therapeutic potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!