Eukaryotic translation initiation factor 5A (eIF5A) is thought to function as a nucleocytoplasmic shuttle protein. There are reports of its involvement in cell proliferation, and more recently it has also been implicated in the regulation of apoptosis. In the present study, we examined the effects of eIF5A over-expression on apoptosis and of siRNA-mediated suppression of eIF5A on expression of the tumour suppressor protein, p53. Over-expression of either eIF5A or a mutant of eIF5A incapable of being hypusinated was found to induce apoptosis in colon carcinoma cells. Our results also indicate that eIF5A is required for expression of p53 following the induction of apoptosis by treatment with Actinomycin D. Depiction of eIF5A localization by indirect immunofluorescence has indicated, for the first time, that the protein is rapidly translocated from the cytoplasm to the nucleus by death receptor activation or following treatment with Actinomycin D. These findings collectively indicate that unhypusinated eIF5A may have pro-apoptotic functions and that eIF5A is rapidly translocated to the nucleus following the induction of apoptotic cell death.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2006.09.030DOI Listing

Publication Analysis

Top Keywords

eif5a
9
eukaryotic translation
8
translation initiation
8
initiation factor
8
apoptosis colon
8
treatment actinomycin
8
rapidly translocated
8
apoptosis
5
factor induces
4
induces apoptosis
4

Similar Publications

Hypusinated and unhypusinated isoforms of the translation factor eIF5A exert distinct effects in models of pancreas development and function.

J Biol Chem

January 2025

Kovler Diabetes Center; Biological Sciences Division; Department of Medicine; Department of Pediatrics, The University of Chicago, Chicago, IL 60637, USA. Electronic address:

Hypusination of eukaryotic translation initiation factor 5A (eIF5A) is essential for its role in translation elongation and termination. Although the function of hypusinated eIF5A (eIF5A) in cellular proliferation is well-characterized, the role of its unhypusinated form (eIF5A) remains unclear. We hypothesized that eIF5A exerts independent, negative effects on cellular replication and metabolism, distinct from the loss of eIF5A.

View Article and Find Full Text PDF

The structural biology of deoxyhypusination complexes.

Structure

January 2025

Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland. Electronic address:

Deoxyhypusination is the first rate-limiting step of the unique post-translational modification-hypusination-that is catalyzed by deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH). This modification is essential for the activation of translation factor 5A in eukaryotes (eIF5A) and Archaea (aIF5A). This perspective focuses on the structural biology of deoxyhypusination complexes in eukaryotic and archaeal organisms.

View Article and Find Full Text PDF

Circular RNAs (circRNAs), covalently closed single-stranded RNAs, have been implicated in cancer progression. A previous investigation revealed that circ-ZEB1 is expressed abnormally in liver cancer. However, the roles of circ-ZEB1 in non-small cell lung cancer (NSCLC) are unknown.

View Article and Find Full Text PDF

Natural products have a long history of providing probes into protein biosynthesis, with many of these compounds serving as therapeutics. The marine natural product girolline has been described as an inhibitor of protein synthesis. Its precise mechanism of action, however, has remained unknown.

View Article and Find Full Text PDF

Purpose: Understanding the molecular mechanisms of adaptive regulation in the tumor microenvironment is crucial for precision therapy in hepatocellular carcinoma (HCC). We hypothesized that cargo proteins carried by extracellular vesicles (EVs) released in a hypoxic microenvironment might promote HCC progression by remodeling tumor-associated macrophages (TAMs).

Methods: EV protein analysis by label-free proteomics mass spectrometry of HCC cell lines of different tumor grades was performed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!