Background: In class prediction problems using microarray data, gene selection is essential to improve the prediction accuracy and to identify potential marker genes for a disease. Among numerous existing methods for gene selection, support vector machine-based recursive feature elimination (SVM-RFE) has become one of the leading methods and is being widely used. The SVM-based approach performs gene selection using the weight vector of the hyperplane constructed by the samples on the margin. However, the performance can be easily affected by noise and outliers, when it is applied to noisy, small sample size microarray data.
Results: In this paper, we propose a recursive gene selection method using the discriminant vector of the maximum margin criterion (MMC), which is a variant of classical linear discriminant analysis (LDA). To overcome the computational drawback of classical LDA and the problem of high dimensionality, we present efficient and stable algorithms for MMC-based RFE (MMC-RFE). The MMC-RFE algorithms naturally extend to multi-class cases. The performance of MMC-RFE was extensively compared with that of SVM-RFE using nine cancer microarray datasets, including four multi-class datasets.
Conclusion: Our extensive comparison has demonstrated that for binary-class datasets MMC-RFE tends to show intermediate performance between hard-margin SVM-RFE and SVM-RFE with a properly chosen soft-margin parameter. Notably, MMC-RFE achieves significantly better performance with a smaller number of genes than SVM-RFE for multi-class datasets. The results suggest that MMC-RFE is less sensitive to noise and outliers due to the use of average margin, and thus may be useful for biomarker discovery from noisy data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1790716 | PMC |
http://dx.doi.org/10.1186/1471-2105-7-543 | DOI Listing |
Am J Physiol Regul Integr Comp Physiol
January 2025
Department of Thoracic Surgery, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region.
We aimed to explore the role of Amino acid metabolism (AAM) and identify biomarkers for prognosis management and treatment of lung adenocarcinoma. Differentially expressed genes (DEGs) associated with AAM in lung adenocarcinoma were selected from public databases. Samples were clustered into varying subtypes using ConsensusClusterPlus based on gene levels.
View Article and Find Full Text PDFCancer Chemother Pharmacol
January 2025
Service de Génomique des Tumeurs et Pharmacologie, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Paris, France.
The enzyme dihydropyrimidine dehydrogenase (DPD) is the primary catabolic pathway of fluoropyrimidines including 5 fluorouracil (5FU) and capecitabine. Cases of lethal toxicity have been reported in cancer patients with complete DPD deficiency receiving standard dose of 5FU or capecitabine. DPD is encoded by the pharmacogene DPYD in which more than 200 variants have been identified.
View Article and Find Full Text PDFMicrobiol Spectr
December 2024
Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
Carbapenem-resistant complex (CR-ECC), which is rapidly increasing as the cause of nosocomial infections, has limited treatment options. The aim of this study is to investigate the microbiological and clinical traits and molecular epidemiology of isolates of CR-ECC and provide guidance for antibiotic selection in clinical practice. Clinical CR-ECC isolates (ertapenem MIC ≥ 2 mg/L) were collected from 2021 to 2022.
View Article and Find Full Text PDFmSphere
December 2024
Department of Microbiology and Immunology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.
particularly the group, is a major cause of nosocomial infections, and carbapenem-resistant spp. are important human pathogens. We collected 492 spp.
View Article and Find Full Text PDFPhytopathology
January 2025
Agricultural University of Hebei, 289 Lingyusi, Baoding, Baoding, Hebei, China, 071001;
Wheat leaf rust, caused by Erikss. (), is one of the most devastating diseases in common wheat ( L.) globally.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!