Both alpha-amylase inhibitor-2 (alphaAI-2) and arcelin have been implicated in resistance of wild common bean (Phaseolus vulgaris L.) to the Mexican bean weevil (Zabrotes subfasciatus Boheman). Near isogenic lines (NILs) for arcelin 1-5 were generated by backcrossing wild common bean accessions with a cultivated variety. Whereas seeds of a wild accession (G12953) containing both alphaAI-2 and arcelin 4 were completely resistant to Z. subfasciatus, those of the corresponding NIL were susceptible to infestation, suggesting that the principal determinant of resistance was lost during backcrossing. Three independent lines of transgenic azuki bean [Vigna angularis (Willd.) Ohwi and Ohashi] expressing alphaAI-2 accumulated high levels of this protein in seeds. The expression of alphaAI-2 in these lines conferred protection against the azuki bean weevil (Callosobruchus chinensis L.), likely through inhibition of larval digestive alpha-amylase. However, although the seed content of alphaAI-2 in these transgenic lines was similar to that in a wild accession of common bean (G12953), it did not confer a level of resistance to Z. subfasciatus similar to that of the wild accession. These results suggest that alphaAI-2 alone does not provide a high level of resistance to Z. subfasciatus. However, alphaAI-2 is an effective insecticidal protein with a spectrum of activity distinct from that of alphaAI-1, and it may prove beneficial in genetic engineering of insect resistance in legumes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00122-006-0476-yDOI Listing

Publication Analysis

Top Keywords

common bean
16
wild common
12
wild accession
12
alpha-amylase inhibitor-2
8
resistance wild
8
alphaai-2 arcelin
8
bean weevil
8
azuki bean
8
level resistance
8
resistance subfasciatus
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!