The formation of RNA and DNA adducts by the environmental pollutant 2-nitrofluorene (2-NF) has been investigated in rat liver in vivo. The adduct pattern was studied after trifluoroacetic acid hydrolysis of DNA or RNA, followed by analysis of the adducts by HPLC. This was also done by enzymatic hydrolysis of DNA, followed by 32P-postlabeling. Both after oral and i.v. administration of [3H]2-NF, one major adduct was found. This adduct did not co-migrate with one of the known adducts of 2-(acetyl)-aminofluorene, N-deoxyguanosin-8-yl-2-aminofluorene (dG-C8-AF), which could have been formed after nitroreduction of 2-NF. 32P-Postlabeling revealed that two minor adducts were also formed, one of which was dG-C8-AF. The observation that the major adduct was also formed after i.v. administration of 2-NF to bile duct-catheterized rats makes a role for the intestinal microflora in the formation of this adduct very unlikely. In vitro experiments with inhibitors of the enzyme epoxide hydrolase indicated that epoxidation of 2-NF may play a role in the microsomal bioactivation of this compound.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/carcin/12.11.2053 | DOI Listing |
Nucleic Acids Res
January 2025
Single-Molecule and Cell Mechanobiology Laboratory, Daejeon, 34141, South Korea.
Helicase is a nucleic acid motor that catalyses the unwinding of double-stranded (ds) RNA and DNA via ATP hydrolysis. Helicases can act either as a nucleic acid motor that unwinds its ds substrates or as a chaperone that alters the stability of its substrates, but the two activities have not yet been reported to act simultaneously. Here, we used single-molecule techniques to unravel the synergistic coordination of helicase and chaperone activities, and found that the severe acute respiratory syndrome coronavirus helicase (nsp13) is capable of two modes of action: (i) binding of nsp13 in tandem with the fork junction of the substrate mechanically unwinds the substrate by an ATP-driven synchronous power stroke; and (ii) free nsp13, which is not bound to the substrate but complexed with ADP in solution, destabilizes the substrate through collisions between transient binding and unbinding events with unprecedented melting capability.
View Article and Find Full Text PDFTalanta
January 2025
School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China. Electronic address:
Hepatocellular carcinoma (HCC) stands as a grave illness characterized by elevated death rates. Early identification plays a vital role in improving patient survival. Herein, a novel split-type dual-mode biosensor featuring with near-infrared photoelectronchemical (PEC) and colorimetric sensing characteristics was developed for the high-performance detection of HepG2 cells.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315800, PR China.
Two Gram-stain-negative, curved-rod-shaped, non-motile and aerobic bacteria W6 and I13 were isolated from marine sediment samples collected from Meishan Island located in the East China Sea. Catalase and oxidase activities and hydrolysis of Tween 40, 60 and 80 were positive for both strains, while nitrate reduction, indole production, methyl red reaction and HS production were negative. Phylogenetic analyses based on 16S rRNA and genome sequences revealed that strains W6 and I13 formed distinct phylogenetic lineages within the genera and , respectively.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China. Electronic address:
Enzymatic hydrolysis approach is commonly employed for preparation of active peptides, while the limited purity and yield of produced peptides hinder further development of action mechanisms. This study presents the biotechnological approach for the efficient production of recombinant angiotensin converting enzyme (ACE) inhibitory peptide LYPVK and investigates its potential antihypertensive action mechanism. DNA encoding sequence of recombinant peptide was designed to form in tandem, which was expressed in Escherichia coli BL21 (DE3).
View Article and Find Full Text PDFDNA Repair (Amst)
January 2025
School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, Scotland. Electronic address:
Ubiquitin-specific protease 1 (USP1) is the founding member of the family of cysteine proteases that catalyse hydrolysis of the isopeptide bond between ubiquitin and targets. USP1 is often overexpressed in various cancers, and expression levels correlate with poor prognosis. USP1 and its partner USP1-associated Factor 1 (UAF1) are required for deubiquitinating monoubiquitin signals in DNA interstrand crosslink repair, and in Translesion synthesis, among others, and both proteins are subject to multiple regulations themselves.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!