The optical-optical double resonance spectra of I(2) and I(2)-Xe mixtures at room temperature reported in the literature using a fixed-wavelength, broad band pump laser have now been recorded using a tuneable, narrow band source. We show that during the time of the overlapped laser pulses ( approximately 10 ns) and with 10-20 Torr of Xe there is widespread collisional energy transfer in the intermediate state and that this phenomenon offers an alternative explanation for the broad bands in the excitation spectrum, assigned to XeI(2) complexes by the authors of the earlier study (M. E. Akopyan, I. Y. Novikova, S. A. Poretsky and A. M. Pravilov, Chem. Phys., 2005, 310, 287). Dispersed emission bands, previously attributed to direct fluorescence from the ion-pair state(s) of the complexes, are re-assigned to emission from ion-pair states of the parent I(2) that are populated by collisional energy transfer out of the initially excited state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b613380k | DOI Listing |
J Am Soc Mass Spectrom
January 2025
Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via G. Amendola 165/a, 70126 Bari, Italy.
Coenzyme Q (CoQ) and closely related compounds with varying isoprenoid tail lengths (CoQ, = 6-9) are biochemical cofactors involved in many physiological processes, playing important roles in cellular respiration and energy production. Liquid chromatography (LC) coupled with single or tandem mass spectrometry (MS) using electrospray (ESI) or atmospheric pressure chemical ionization (APCI) is considered the gold standard for the identification and quantification of CoQ in food and biological samples. However, the characteristic fragmentation exhibited by the CoQ radical anion ([M], / 862.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
January 2025
Analytical Characterization, Biologics Analytical Development, Technical Research & Development, Novartis Pharma AG, WKL693.3.20, Postfach, CH-4002 Basel, Switzerland.
Isomerization of aspartic acid residues is a relevant degradation pathway of protein biopharmaceuticals as it can impair their biological activity. However, the in silico prediction of isomerization hotspots and their consequences remains ambiguous and misleading. We have previously shown that all ion differential analysis (AiDA) of middle-down spectra can be used to reveal diagnostic terminal and internal fragments with more sensitivity than the conventional fragment ion mass matching methodology.
View Article and Find Full Text PDFACS Nano
January 2025
Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, Karlsruhe 76131, Germany.
Atomically precise clusters such as [Pt(CO)(PPh)] ( = 1,2) (PPh is triphenylphosphine) are known as precursors for making oxidation catalysts. However, the changes occurring to the cluster upon thermal activation during the formation of the active catalyst are poorly understood. We have used a combination of hybrid mass spectrometry and surface science to map the thermal decomposition of [Pt(CO)(PPh)](NO).
View Article and Find Full Text PDFJ Chem Phys
December 2024
Xinjiang Key Laboratory of Solid State Physics and Devices, Xinjiang University, Urumqi 830017, China.
The collisional energy transfer between vibrational excited H2(1, 7) and CO2 was investigated by exciting H2 to a vibrational excited state of v = 1, J = 7 by the stimulated Raman scattering technique. The coherent anti-Stokes Raman spectroscopy (CARS) technique determined that H2 was excited to the H2(1, 7) state. Varying the cuvette temperature, the number of H2(1, 7) particles was found to increase with the increase in H2 molar ratio α by scanning the intensity of the CARS spectrum, with peaks at different α at a temperature of 363 ± 15 K, but the peak temperature was not sensitive to α.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)─UMR 6251, F-35000 Rennes, France.
Chloronium (HCl) is an important intermediate of Cl-chemistry in space. The accurate knowledge of its collisional properties allows a better interpretation of the corresponding observations in interstellar clouds and, therefore, a better estimation of its abundance in these environments. While the ro-vibrational spectroscopy of HCl is well-known, the studies of its collisional excitation are rather limited and these are available for the interaction with helium atoms only.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!