Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 177
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 177
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 251
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1037
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3155
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The activity of glycogen-accumulating organisms (GAOs) in enhanced biological phosphorus removal (EBPR) wastewater treatment plants has been proposed as one cause of deterioration of EBPR. Putative GAOs from the Alphaproteobacteria, Defluviicoccus spp. (including D. vanus), were studied in full-scale EBPR plants to determine their distribution, abundance and ecophysiology. Fluorescence in situ hybridization (FISH) demonstrated that Defluviicoccus spp. were generally low in abundance; however, in one plant surveyed, Cluster 2 Defluviicoccus constituted 9 % of all Bacteria. FISH combined with microautoradiography revealed that both Cluster 1 and Cluster 2 Defluviicoccus were capable of taking up a narrow range of substrates including acetate, propionate, pyruvate and glucose under anaerobic and aerobic conditions. Formate, butyrate, ethanol and several other substrates were not taken up. Cluster 2 Defluviicoccus demonstrated a phenotype consistent with the current metabolic model for GAOs--anaerobic assimilation of acetate and reduction to polyhydroxyalkanoates (PHA) using the glycolytic pathway, and aerobic consumption of PHA. Polyphosphate-accumulating organisms (PAOs, 'Candidatus Accumulibacter phosphatis') and other putative GAOs ('Candidatus Competibacter phosphatis') co-existed in two plants with Cluster 2 Defluviicoccus, but in both plants, the latter organisms were more abundant. Thus Cluster 2 Defluviicoccus can be relatively abundant and could be carbon competitors of PAOs and other GAOs in EBPR plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/mic.0.2006/001032-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!