Human plasma ATP concentration.

Clin Chem

Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195-7290, USA.

Published: February 2007

Background: Human plasma ATP concentration is reported in many studies as roughly 1000 nmol/L. The present study tested the hypothesis that the measured plasma ATP concentration is lower if ATP release from formed blood elements is inhibited during blood sample processing. A second hypothesis was that pretreatment with aspirin to inhibit platelets would reduce the measured plasma concentration of ATP.

Methods: Blood was sampled from the antecubital vein in 20 healthy individuals 30 and 60 min after ingestion of aspirin (325 mg) or placebo. Aliquots of each blood sample were added to the usual EDTA/saline solution to inhibit ATP catabolism, or to a new stabilizing solution designed to both stop ATP catabolism and inhibit ATP release from blood elements. The stabilizing solution contained NaCl, EDTA, tricine buffer, KCl, nitrobenzylthioinosine, forskolin, and isobutylmethylxanthine. Plasma ATP was measured with the luciferin-luciferase assay with standard additions in each sample to determine ATP content. Hemoglobin concentration was used as an index of sample hemolysis, and the plasma ATP concentration was corrected for the hemolysis component.

Results: Aspirin pretreatment had no effect on plasma ATP concentrations. However, use of the stabilizing solution resulted in mean (SD) ATP concentrations 8-fold lower than the use of EDTA alone [28 (16) vs 236 (201) nmol/L; P <0.001].

Conclusion: When precautions are taken to inhibit ATP release from blood elements during sample preparation, human venous plasma ATP concentration is much lower than previously reported.

Download full-text PDF

Source
http://dx.doi.org/10.1373/clinchem.2006.076364DOI Listing

Publication Analysis

Top Keywords

plasma atp
24
atp concentration
16
atp
12
stabilizing solution
12
human plasma
8
measured plasma
8
atp release
8
blood elements
8
blood sample
8
inhibit atp
8

Similar Publications

Alzheimer's disease (AD), a prevalent neurodegenerative disorder, is characterized by mitochondrial dysfunction and immune dysregulation. This study is aimed at developing a risk prediction model for AD by integrating multi-omics data and exploring the interplay between mitochondrial energy metabolism-related genes (MEMRGs) and immune cell dynamics. We integrated four GEO datasets (GSE132903, GSE29378, GSE33000, GSE5281) for differential gene expression analysis, functional enrichment, and weighted gene co-expression network analysis (WGCNA).

View Article and Find Full Text PDF

Identification and Functional Analysis of miRNAs in Extracellular Vesicles of Semen Plasma from High- and Low-Fertility Boars.

Animals (Basel)

December 2024

State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.

Artificial insemination (AI), as an efficient assisted reproduction technology, can help the livestock industry to improve livestock and poultry breeds, optimize production performance and improve reproductive efficiency. AI technology has been widely used in pig production in China, but boar fertility affects the effectiveness of AI, and more and more studies have shown that there are significant differences in the fertility of boars with similar semen quality indicators. Therefore, this study aimed to identify biomarker molecules that indicate the level of boar fertility, which is important for improving the efficiency of AI.

View Article and Find Full Text PDF
Article Synopsis
  • The transmembrane potential is crucial for cellular functions like signaling and energy production, with Rhodamine voltage reporters (RhoVRs) serving as small, non-invasive sensors that can detect voltage changes, especially in mitochondria.
  • Extensive simulations and free-energy calculations revealed that the orientation of RhoVRs relative to membranes, influenced by their polarized functional groups, significantly impacts their voltage sensitivity and localization within cells.
  • The study's findings on the relationship between the chemical structure of RhoVRs and their membrane behavior offer valuable insights for designing fluorescent dyes that better detect voltage changes.
View Article and Find Full Text PDF

Aripiprazole (ARI) is an atypical antipsychotic which is a substrate of P-glycoprotein (P-gp), a transmembrane glycoprotein that plays a crucial role in eliminating potentially harmful compounds from the organism. ARI once-monthly (AOM) is a long-acting injectable form which improves treatment compliance. Genetic polymorphisms in ABCB1 may lead to changes in P-gp function, leading to individual differences in drug disposition.

View Article and Find Full Text PDF

Objective: To determine if oxidative stress induces phosphatidylserine (PS) externalization in canine erythrocytes and if exposure to antioxidants prevents such changes.

Methods: This was an in vitro, experimental study using 5 healthy, adult, purpose-bred research Beagles. Fresh EDTA-anticoagulated blood samples were collected from each dog, and erythrocytes were harvested.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!