Background: Human plasma ATP concentration is reported in many studies as roughly 1000 nmol/L. The present study tested the hypothesis that the measured plasma ATP concentration is lower if ATP release from formed blood elements is inhibited during blood sample processing. A second hypothesis was that pretreatment with aspirin to inhibit platelets would reduce the measured plasma concentration of ATP.
Methods: Blood was sampled from the antecubital vein in 20 healthy individuals 30 and 60 min after ingestion of aspirin (325 mg) or placebo. Aliquots of each blood sample were added to the usual EDTA/saline solution to inhibit ATP catabolism, or to a new stabilizing solution designed to both stop ATP catabolism and inhibit ATP release from blood elements. The stabilizing solution contained NaCl, EDTA, tricine buffer, KCl, nitrobenzylthioinosine, forskolin, and isobutylmethylxanthine. Plasma ATP was measured with the luciferin-luciferase assay with standard additions in each sample to determine ATP content. Hemoglobin concentration was used as an index of sample hemolysis, and the plasma ATP concentration was corrected for the hemolysis component.
Results: Aspirin pretreatment had no effect on plasma ATP concentrations. However, use of the stabilizing solution resulted in mean (SD) ATP concentrations 8-fold lower than the use of EDTA alone [28 (16) vs 236 (201) nmol/L; P <0.001].
Conclusion: When precautions are taken to inhibit ATP release from blood elements during sample preparation, human venous plasma ATP concentration is much lower than previously reported.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1373/clinchem.2006.076364 | DOI Listing |
J Mol Neurosci
January 2025
Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
Alzheimer's disease (AD), a prevalent neurodegenerative disorder, is characterized by mitochondrial dysfunction and immune dysregulation. This study is aimed at developing a risk prediction model for AD by integrating multi-omics data and exploring the interplay between mitochondrial energy metabolism-related genes (MEMRGs) and immune cell dynamics. We integrated four GEO datasets (GSE132903, GSE29378, GSE33000, GSE5281) for differential gene expression analysis, functional enrichment, and weighted gene co-expression network analysis (WGCNA).
View Article and Find Full Text PDFAnimals (Basel)
December 2024
State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
Artificial insemination (AI), as an efficient assisted reproduction technology, can help the livestock industry to improve livestock and poultry breeds, optimize production performance and improve reproductive efficiency. AI technology has been widely used in pig production in China, but boar fertility affects the effectiveness of AI, and more and more studies have shown that there are significant differences in the fertility of boars with similar semen quality indicators. Therefore, this study aimed to identify biomarker molecules that indicate the level of boar fertility, which is important for improving the efficiency of AI.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
Sci Rep
January 2025
Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706, Santiago de Compostela, Spain.
Aripiprazole (ARI) is an atypical antipsychotic which is a substrate of P-glycoprotein (P-gp), a transmembrane glycoprotein that plays a crucial role in eliminating potentially harmful compounds from the organism. ARI once-monthly (AOM) is a long-acting injectable form which improves treatment compliance. Genetic polymorphisms in ABCB1 may lead to changes in P-gp function, leading to individual differences in drug disposition.
View Article and Find Full Text PDFAm J Vet Res
January 2025
Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN.
Objective: To determine if oxidative stress induces phosphatidylserine (PS) externalization in canine erythrocytes and if exposure to antioxidants prevents such changes.
Methods: This was an in vitro, experimental study using 5 healthy, adult, purpose-bred research Beagles. Fresh EDTA-anticoagulated blood samples were collected from each dog, and erythrocytes were harvested.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!