Activity of c-AMP responsive element-binding protein (CREB) is decreased in Huntington's disease (HD). Such decrease was also described by our group in the quinolinic acid lesion model of striatal excitotoxicity. The phosphodiesterase type IV inhibitor rolipram increases CREB phosphorylation. Such drug has a protective effect in global ischaemia and embolism in rats. In this study, we sought to determine whether rolipram displays a neuroprotective effect in our rat model of HD. Animals were surgically administered QA and subsequently treated with rolipram daily up to 2 and 8 weeks respectively. After these time points, rats were sacrificed and immunohistochemical studies were performed in the striata. In the rolipram-treated animals, striatal lesion size was about 62% smaller that in the vehicle-treated ones at 2 weeks time point. Moreover, the surviving cell number was several times higher in the rolipram-treated animals than in the vehicle group at both time points. Rolipram also showed to be effective in increasing significantly the levels of activated CREB in the striatal spiny neurons, which accounts mostly for its beneficial effect in our rodent model of excitotoxicity. Our findings show that rolipram could be considered as a valid therapeutic approach for HD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nbd.2006.09.006 | DOI Listing |
Hepatol Commun
December 2024
Macquarie Medicine School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.
Background: HE is a neuropsychiatric complication of liver disease characterized by systemic elevation in ammonia and proinflammatory cytokines. These neurotoxins cross the blood-brain barrier and cause neuroinflammation, which can activate the kynurenine pathway (KP). This results in dysregulated production of neuroactive KP metabolites, such as quinolinic acid, which is known to cause astrocyte and neuronal death.
View Article and Find Full Text PDFToxics
December 2024
Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
Methamphetamine (METH) abuse disrupts the homeostasis of neurotransmitter (NT) metabolism, contributing to a wide range of neurological and psychological disorders. However, the specific effects of METH on NT metabolism, particularly for the tryptophan (TRP) and tyrosine (TYR) metabolic pathways, remain poorly understood. In this study, serum samples from 78 METH abusers and 79 healthy controls were analyzed using Ultra-High-Performance Liquid Chromatography with Tandem Mass Spectrometry (UHPLC-MS/MS).
View Article and Find Full Text PDFJ Affect Disord
December 2024
Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China. Electronic address:
Objective: Cognitive impairment occurs throughout the entire course of and affects the work and life of patients with major depressive disorder (MDD). The gut microbiota, kynurenine pathway (KP) and inflammatory response may have important roles in the mechanism of cognitive impairment in MDD patients. Consequently, our goal was to investigate the association among the gut microbiota, inflammation, KP, and cognition in MDD.
View Article and Find Full Text PDFFront Aging Neurosci
November 2024
Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
Clinical symptoms of Parkinson's disease (PD) are classified into motor and non-motor symptoms. Mental disorders, especially depression, are one of the major non-motor manifestations of PD. However, the underlying mechanisms remain poorly understood.
View Article and Find Full Text PDFNeuroscience
January 2025
Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, 603203, Tamil Nadu, India.
Neuroinflammation can be directly linked to the imbalance in the Kynurenine-tryptophan Pathway (KP) metabolism. Under inflammatory circumstances, the KP is activated, resulting in a rise in the KP metabolite L-kynurenine (KYN) in the peripheral and central nervous systems (CNS). Increased amounts of KYN in the brain may lead to neurotoxic KYN metabolites, mostly due to breakdown by Kynurenine-3-monooxygenase (KMO).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!