This research involved the adsorption of synthetic reactive dye wastewater (SRDW) by chitin modified by sodium hypochlorite and original chitin in batch experiments. The comparison of maximum adsorption capacity used the Langmuir model to describe SRDW adsorption onto chitin and modified chitin under a system pH of 11.0. Maximum dye adsorption by chitin increased from 133mgg(-1) to 167mgg(-1) at temperatures of 30-60 degrees C, respectively. For modified chitin, the capacity decreased from 124mgg(-1) to 59mgg(-1) when the temperature increased from 30 degrees C to 60 degrees C, respectively. Both Na(2)SO(4) and Na(2)CO(3) increased in dye adsorption. The spectra of attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectrometry confirmed the hydroxyl groups as functional groups of modified chitin, which affected the modification and the SRDW adsorption. The adsorbed dyes were eluted by distilled water and 1M NaOH to confirm the dye adsorption mechanism. Total elution of modified chitin and chitin were 92.76% and 55.29%, respectively. Although modified chitin had a maximum adsorption capacity less than chitin, elution of the dye from modified chitin was easier than chitin. Therefore, modified chitin could be suitable in a column system for dye pre-concentration as well as wastewater minimisation. In addition, the column study showed that modified chitin could be used for more than four cycles of adsorption and elution by distilled water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2006.11.026 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.
The rising incidence of fungal infections, compounded by the emergence of severe antifungal resistance, has resulted in an urgent need for innovative antifungal therapies. We developed an antifungal protein-based formulation as a topical antifungal agent by combining an artificial lipidated chitin-binding domain of antifungal chitinase (LysM-lipid) with recently developed ionic liquid-in-oil microemulsion formulations (MEFs). Our findings demonstrated that the lipid moieties attached to LysM and the MEFs effectively disrupted the integrity of the stratum corneum in a mouse skin model, thereby enhancing the skin permeability of the LysM-lipids.
View Article and Find Full Text PDFSci Rep
January 2025
Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China.
Rice is susceptible to cold temperatures, especially during the seedling stage. Despite extensive research into the cold tolerance mechanisms of rice, the number of cloned genes remains limited. Plant subtilisin-like proteases (SUBs or SBTs) are protein-hydrolyzing enzymes which play important roles in various aspects of plant growth as well as the plant response to biotic and abiotic stress.
View Article and Find Full Text PDFInfect Genet Evol
December 2024
Division of Vector Biology and Control, Indian Council of Medical Research - Vector Control Research Centre (ICMR-VCRC), Puducherry 605006, India. Electronic address:
Front Biosci (Elite Ed)
October 2024
Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 1983969411 Tehran, Iran.
Background: Regenerative endodontics requires an innovative delivery system to release antibiotics/growth factors in a sequential trend. This study focuses on developing/characterizing a thermoresponsive core-shell hydrogel designed for targeted drug delivery in endodontics.
Methods: The core-shell chitosan-alginate microparticles were prepared by electrospraying to deliver bone morphogenic protein-2 for 14 days and transforming growth factor-beta 1 (TGF-β1) for 7-14 days.
Int J Nanomedicine
December 2024
Shanxi Medical University School and Hospital of Stomatology; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi, 030001, People's Republic of China.
Purpose: During fixed orthodontic treatment, oral hygiene is difficult to ensure and can easily lead to an imbalance in the oral micro-ecological balance. In this study, based on the adhesive properties of polydopamine (PDA) and the good antimicrobial and remineralization properties of carboxymethyl chitosan (CMC) and xylitol (Xy), new nanocomposites with both antimicrobial and remineralization capabilities were prepared to coat on orthodontic brackets.
Methods: Composite carbon dots (CDs) were synthesized using carboxymethyl chitosan and xylitol, we characterized them and the antimicrobial properties of the CMC-Xy-CDs were investigated by co-cultivation with S.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!