A rapid and reliable bacterial source tracking (BST) method is essential to counter risks to human health posed by fecal contamination of surface waters. Genetic fingerprinting methods, such as repetitive sequence based-PCR (rep-PCR), have shown promise as BST tools but are time-consuming and labor-intensive. In this work, we investigate the ability of MALDI-TOF-MS to characterize and discriminate between closely related environmental strains of Escherichia coli and to classify them according to their respective sources. We compared the performance of a rapid MALDI-TOF-MS-based method to a commonly used rep-PCR-based method that employs the BOX-A1R primer. Among the criteria evaluated were repeatability and the ability of each method to group E. coli isolates according to their respective sources. Our data suggest that the MALDI-TOF-MS-based approach has a lower repeatability level compared to rep-PCR but offers an improved ability to correctly assign E. coli isolates to specific source groups. In addition, we have identified five biomarkers that appear conserved among avian species. We conclude that MALDI-TOF-MS may represent a promising, novel and rapid approach to addressing the problem of fecal contamination of surface waters and warrants further investigation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mimet.2006.10.012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!