QSARs for the toxicity of polychlorinated dibenzofurans through DFT-calculated descriptors of polarizabilities, hyperpolarizabilities and hyper-order electric moments.

Chemosphere

State Key Laboratory of Soil and Sustainable Agriculture, Nanjing Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, PR China.

Published: April 2007

DFT-B3LYP method with 6-31G(**) basis set was employed to fully optimize the electronic structures of 135 polychlorinated dibenzofurans and parent compound, namely dibenzofuran. It was demonstrated that polarizability anisotropy and mean polarizability could change sensitively and systematically with chlorine number and substitution pattern. And new quantitative structure-activity relationships (QSARs) focused on the binding affinities of aryl hydrocarbon receptor (AhR), aryl hydrocarbon hydroxylase (AHH) and 7-ethoxyresorufin O-deethylase (EROD) induction potencies of PCDFs were developed. It was concluded that polarizability anisotropy in conjunction with hyperpolarizabilties and hyper-order electric moments, e.g. octupole moments could well interpret the variation of toxicity of different congeners and dispersion interaction should be the leading form among various interactions. Although the terms of hyperpolarizabilities and hyper-order electric moments were not the same significant ones as polarizability anisotropy, the long-range interactions characterized by them should not be ignored in explaining the toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2006.10.057DOI Listing

Publication Analysis

Top Keywords

hyper-order electric
12
electric moments
12
polarizability anisotropy
12
polychlorinated dibenzofurans
8
hyperpolarizabilities hyper-order
8
aryl hydrocarbon
8
qsars toxicity
4
toxicity polychlorinated
4
dibenzofurans dft-calculated
4
dft-calculated descriptors
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!