Background: Emergence of drug-resistant strains of human immunodeficiency virus type 1 (HIV-1) is a major obstacle to successful antiretroviral therapy (ART) in HIV-infected patients. Whether antiviral immunity can augment ART by suppressing replication of drug-resistant HIV-1 in humans is not well understood, but can be explored in non-human primates infected with simian immunodeficiency virus (SIV). Rhesus macaques infected with live, attenuated SIV develop robust SIV-specific immune responses but remain viremic, often at low levels, for periods of months to years, thus providing a model in which to evaluate the contribution of antiviral immunity to drug efficacy. To investigate the extent to which SIV-specific immune responses augment suppression of drug-resistant SIV, rhesus macaques infected with live, attenuated SIVmac239Deltanef were treated with the reverse transcriptase (RT) inhibitor tenofovir, and then challenged with pathogenic SIVmac055, which has a five-fold reduced sensitivity to tenofovir.

Results: Replication of SIVmac055 was detected in untreated macaques infected with SIVmac239Deltanef, and in tenofovir-treated, naïve control macaques. The majority of macaques infected with SIVmac055 experienced high levels of plasma viremia, rapid CD4+ T cell loss and clinical disease progression. By comparison, macaques infected with SIVmac239Deltanef and treated with tenofovir showed no evidence of replicating SIVmac055 in plasma using allele-specific real-time PCR assays with a limit of sensitivity of 50 SIV RNA copies/ml plasma. These animals remained clinically healthy with stable CD4+ T cell counts during three years of follow-up. Both the tenofovir-treated and untreated macaques infected with SIVmac239Deltanef had antibody responses to SIV gp130 and p27 antigens and SIV-specific CD8+ T cell responses prior to SIVmac055 challenge, but only those animals receiving concurrent treatment with tenofovir resisted infection with SIVmac055.

Conclusion: These results support the concept that anti-viral immunity acts synergistically with ART to augment drug efficacy by suppressing replication of viral variants with reduced drug sensitivity. Treatment strategies that seek to combine immunotherapeutic intervention as an adjunct to antiretroviral drugs may therefore confer added benefit by controlling replication of HIV-1, and reducing the likelihood of treatment failure due to the emergence of drug-resistant virus, thereby preserving treatment options.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1769512PMC
http://dx.doi.org/10.1186/1742-4690-3-97DOI Listing

Publication Analysis

Top Keywords

macaques infected
24
rhesus macaques
12
infected sivmac239deltanef
12
anti-viral immunity
8
drug-resistant siv
8
infected
8
macaques
8
emergence drug-resistant
8
immunodeficiency virus
8
antiviral immunity
8

Similar Publications

Broadly neutralizing antibodies (bnAbs) against HIV-1 have been shown to protect from systemic infection. When employing a novel challenge virus that uses HIV-1 Env for entry into target cells during the first replication cycle, but then switches to SIV Env usage, we demonstrated that bnAbs also prevented mucosal infection of the first cells. However, it remained unclear whether antibody Fc-effector functions contribute to this sterilizing immunity.

View Article and Find Full Text PDF

We previously reported that mice immunized twice with a lipid nanoparticle vaccine comprising four monkeypox viral mRNAs raised neutralizing antibodies and antigen-specific T cells and were protected against a lethal intranasal challenge with vaccinia virus (VACV). Here we demonstrated that the mRNA vaccine also protects mice against intranasal and intraperitoneal infections with monkeypox virus and bioluminescence imaging showed that vaccination greatly reduces or prevents VACV replication and spread from intranasal, rectal, and dermal inoculation sites. A single vaccination provided considerable protection that was enhanced by boosting for at least 4 months.

View Article and Find Full Text PDF

Eilat (EILV)/chikungunya virus (CHIKV), an insect-based chimeric alphavirus was previously reported to protect mice months after a single dose vaccination. The underlying mechanisms of host protection are not clearly defined. Here, we assessed the capacity of EILV/CHIKV to induce quick and durable protection in cynomolgus macaques.

View Article and Find Full Text PDF

Zika virus (ZIKV) outbreaks occur sporadically in tropical and subtropical regions. At present, there are no licensed vaccines or specific treatments available for ZIKV. Ivermectin is approved for use in humans as an antiparasitic drug.

View Article and Find Full Text PDF

Tuberculosis (TB) is the first infectious disease to be screened-out from specified pathogen-free cynomolgus macaques (Macaca fascicularis; Mf) using in human pharmaceutical testing. Being in either latent or active stage after exposure to the Mycobacterium tuberculosis complex (MTBC), the monkey gamma-interferon release assay (mIGRA) was previously introduced for early TB detection. However, a notable incidence of indeterminate results was observed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!