Aims: The organization of ribosomal RNA (rrn) operons in Lactobacillus sanfranciscensis was studied in order to establish an easy-to-perform method for identification of L. sanfranciscensis strains, based on the length and sequence polymorphism of the 16S-23S rDNA intergenic spacer region (ISR).
Methods And Results: PCR amplification of the 16S-23S rDNA ISRs of L. sanfranciscensis gave three products distinguishing this micro-organism from the remaining Lactobacillus species. Sequence analysis revealed that two of the rrn operons were organized as in previously reported lactobacilli: large spacer (L-ISR), containing tRNA(Ile) and tRNA(Ala) genes; small spacer (S-ISR) without tRNA genes. The third described spacer (medium, M-ISR), original for L. sanfranciscensis, harboured a tRNA-like structure. An oligonucleotide sequence targeting the variable region between tDNA(Ile) and tDNA(Ala) of L. sanfranciscensis L-ISR was approved to be suitable in species-specific identification procedure. Analysis by pulse-field gel electrophoresis of the chromosomal digest with the enzyme I-CeuI showed the presence of seven rrn clusters. Lactobacillus sanfranciscensis genome size was estimated at c. 1.3 Mb.
Conclusions: Direct amplification of 16S-23S ISRs or PCR with specific primer derived from L-ISR showed to be useful for specific typing of L. sanfranciscensis. This was due to the specific rrn operon organization of L. sanfranciscensis strains.
Significance And Impact Of The Study: In this paper, we have reported a rapid procedure for L. sanfranciscensis identification based on specific structures found in its rrn operon.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2672.2006.03039.x | DOI Listing |
Int J Biol Macromol
April 2024
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China. Electronic address:
Starch-converting α-glucanotransferases are efficient enzymatic toolkits for the biosynthesis of diverse α-glucans, which hold vast application potential in the food industry. In this work, we identified a novel GtfB protein from Fructilactobacillus sanfranciscensis TMW11304 (FsTMW11304 GtfB) in NCBI. Although this enzyme was highly conserved in motifs I-IV with those isomalto-maltopolysaccharides (IMMPs)-producing GtfB α-glucanotransferases, it possessed distinct deletions and mutations in two crucial loops shaping the active site.
View Article and Find Full Text PDFBioresour Technol
August 2023
Hangzhou Wahaha Group Co. Ltd., Hangzhou 310018, China; Hangzhou Wahaha Technology Co. Ltd., Hangzhou 310018, China; Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou 310018, China. Electronic address:
Cis-3-hydroxypipecolic acid (cis-3-HyPip) is the crucial part of many alkaloids and drugs. However, its bio-based industrial production remains challenging. Here, lysine cyclodeaminase from Streptomyces malaysiensis (SmLCD) and pipecolic acid hydroxylase from Streptomyces sp.
View Article and Find Full Text PDFFood Res Int
January 2023
College of Food Science and Engineering, Henan University of Technology, Lianhua Street, Hi-tech Development Zone, Zhengzhou, Henan Province 450001, China. Electronic address:
Continuous propagation of Chinese traditional sourdough (CTS) was adopted to simulate the industrial production of sourdough steamed bread made by retarded sponge-dough method (SSB). Establishment of a stable microbial ecosystem occurred in mature sourdough within four days of continuous propagation, as revealed by both microbial and metabolic analyses. Lactobacillus sanfranciscensis and Kazachstania humilis were the predominant bacterial and fungal species in mature sourdoughs.
View Article and Find Full Text PDFEndocr Metab Immune Disord Drug Targets
March 2023
Department of Microbiology and Biotechnology, Max Rubner-Institut, Hermann-Weigmann-Str 1, D-24103 Kiel, Germany.
Background And Aims: Dietary habits, food, and nutrition-associated oral dysbiosis lead to the formation of microbial biofilm, which affects the overall health of an individual by promoting systemic diseases like cardiovascular disease, immunological disorders, and diabetes. Today's diets contain a variety of fermentable carbohydrates, including highly processed starch and novel synthetic carbohydrates such as oligofructose, sucralose, and glucose polymers. These constitute risk factors in the initiation and progression of oral dysbiosis.
View Article and Find Full Text PDFFront Microbiol
January 2022
Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, China.
Ants are evolutionarily successful species and occupy diverse trophic and habitat niches on the earth. To fulfill dietary requirements, ants have established commensalism with both sap-feeding insects and bacteria. In this study, we used high-throughput sequencing of the bacterial 16S rRNA gene to characterize the bacterial composition and structure of the digestive tracts in three species of ants and (Linnaeus)-species that predominantly feed on honeydew secreted by aphids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!