Studies involving animal models of acute central nervous system (CNS) stroke and trauma strongly indicate that sex and/or hormonal status are important determinants of outcome after brain injury. The present study was undertaken to examine the ability of estradiol to protect hippocampal neurons from lateral fluid percussion brain injury. Sprague-Dawley female rats (211-285 g; n = 119) were ovariectomized, and a subset (n = 66) were implanted with 17beta-estradiol pellets to provide near physiological levels of estradiol. Animals were subjected to lateral fluid percussion brain injury or sham injury 1 week later. Activation of caspase-3 (n = 26) and TUNEL staining (n = 21) were assessed at 3 and 12 h after injury, respectively, in surviving control and estradiol-treated animals. Memory retention was examined using a Morris water maze test in a separate subset of animals (n = 43) at 8 days after injury. Activated caspase-3 and TUNEL staining were observed in the dentate hilus, granule cell layer, and CA3 regions in all injured rats, indicative of selective hippocampal cell apoptosis in the acute posttraumatic period. Estradiol did not significantly alter the number of hippocampal neurons exhibiting caspase-3 activity or TUNEL staining. Brain injury impaired cognitive ability, assessed at 1 week post-injury (p < 0.001). However, estradiol at physiological levels did not significantly alter injury-induced loss of memory. These data indicate that estradiol at physiological levels does not ameliorate trauma-induced hippocampal injury or cognitive deficits in ovariectomized female rats.

Download full-text PDF

Source
http://dx.doi.org/10.1089/neu.2006.23.1814DOI Listing

Publication Analysis

Top Keywords

brain injury
20
lateral fluid
12
fluid percussion
12
percussion brain
12
female rats
12
physiological levels
12
tunel staining
12
injury
9
hippocampal neurons
8
caspase-3 tunel
8

Similar Publications

Purpose: This study examined the occurrence and MRI characteristics of perinatal arterial ischemic stroke (PAIS) in children with cerebral palsy (CP) and suspected term hypoxic-ischemic injury (HII).

Methods: A retrospective review of brain MRI scans was conducted on children with CP and suspected term HII in South Africa.

Results: Out of 1620 children with CP included in the study, 15 (0.

View Article and Find Full Text PDF

Objective: To assess the extent to which the concomitant presence of subclinical myocardial injury or stress and diabetes affects the risk of heart failure (HF) subtypes.

Research Design And Methods: The Jackson Heart Study included Black adults, categorized based on diabetes status, high-sensitivity cardiac troponin I (hs-cTnI), and brain natriuretic peptide (BNP) levels. Subclinical myocardial injury was defined as hs-cTnI ≥4 ng/L in women and ≥6 ng/L in men, and subclinical myocardial stress as BNP ≥35 pg/mL.

View Article and Find Full Text PDF

Among hornbill birds, the critically endangered helmeted hornbill (Rhinoplax vigil) is notable for its casque (a bulbous beak protrusion) being filled with trabeculae and fronted by a very thick keratin layer. Casque function is debated but appears central to aerial jousting, where birds (typically males) collide casques at high speeds in a mid-flight display that is audible for more than 100 m. We characterized the structural relationship between the skull and casque anatomy using X-ray microtomography and quantitative trabecular network analysis to examine how the casque sustains extreme impact.

View Article and Find Full Text PDF

Objective: Older adults have an increased risk of developing persistent cognitive complaints after mild traumatic brain injury (mTBI). Yet, studies exploring which factors protect older adults with mTBI from developing such complaints are rare. It has been suggested that one such factor may be cognitive reserve (CR), but it is unknown how CR influences cognition in this patient category.

View Article and Find Full Text PDF

Stroke severity shapes extracellular vesicle profiles and their impact on the cerebral endothelial cells.

J Physiol

January 2025

Vascular Physiology Laboratory, Group of Research and Innovation in Vascular Health, Department of Basic Sciences, Faculty of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile.

Ischaemic stroke is a leading cause of death and disability. Circulating extracellular vesicles (EVs) post-stroke may help brain endothelial cells (BECs) counter ischaemic injury. However data on how EVs from ischaemic stroke patients, considering injury severity, affect these cells are limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!