Chemokine receptor expression by neural progenitor cells in neurogenic regions of mouse brain.

J Comp Neurol

Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, Illinois 60611, USA.

Published: February 2007

We previously demonstrated that chemokine receptors are expressed by neural progenitors grown as cultured neurospheres. To examine the significance of these findings for neural progenitor function in vivo, we investigated whether chemokine receptors were expressed by cells having the characteristics of neural progenitors in neurogenic regions of the postnatal brain. Using in situ hybridization we demonstrated the expression of CCR1, CCR2, CCR5, CXCR3, and CXCR4 chemokine receptors by cells in the dentate gyrus (DG), subventricular zone of the lateral ventricle, and olfactory bulb. The pattern of expression for all of these receptors was similar, including regions where neural progenitors normally reside. In addition, we attempted to colocalize chemokine receptors with markers for neural progenitors. In order to do this we used nestin-EGFP and TLX-LacZ transgenic mice, as well as labeling for Ki67, a marker for dividing cells. In all three areas of the brain we demonstrated colocalization of chemokine receptors with these three markers in populations of cells. Expression of chemokine receptors by neural progenitors was further confirmed using CXCR4-EGFP BAC transgenic mice. Expression of CXCR4 in the DG included cells that expressed nestin and GFAP as well as cells that appeared to be immature granule neurons expressing PSA-NCAM, calretinin, and Prox-1. CXCR4-expressing cells in the DG were found in close proximity to immature granule neurons that expressed the chemokine SDF-1/CXCL12. Cells expressing CXCR4 frequently coexpressed CCR2 receptors. These data support the hypothesis that chemokine receptors are important in regulating the migration of progenitor cells in postnatal brain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2758702PMC
http://dx.doi.org/10.1002/cne.21229DOI Listing

Publication Analysis

Top Keywords

chemokine receptors
28
neural progenitors
20
cells
10
chemokine
9
receptors
9
neural progenitor
8
progenitor cells
8
neurogenic regions
8
brain demonstrated
8
receptors expressed
8

Similar Publications

Ferrocenyl-Substituted Curcumin Derivatives as Potential SHP-2 Inhibitors for Anticolorectal Cancer: Design, Synthesis and Evaluation.

ACS Omega

December 2024

Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China.

A panel of ferrocenyl-substituted curcumin derivatives has been designed and synthesized as protein tyrosine phosphatase proto-oncogene SHP-2 inhibitors. Antiproliferative activities of the synthesized compounds were tested against colorectal cancer cell lines (including RKO, SW480, and CT26). Compound showed excellent activities against the tested cell lines with IC values of 5.

View Article and Find Full Text PDF

Recovery from spinal cord injury (SCI) is often impeded by neuroinflammation, scar formation, and limited axonal regeneration. To tackle these issues, we developed an innovative biomimetic drug delivery system using liquid nitrogen-treated M2 macrophages (LNT M2) which internalized paclitaxel (PTX) nanoparticles beforehand. These were incorporated into a gelatin methacryloyl (GelMA) scaffold, creating a multifunctional, injectable treatment for single-dose administration.

View Article and Find Full Text PDF

The complement system and neutrophils constitute the two main pillars of the host innate immune defense against infection by bacterial pathogens. Here, we identify T-Mac, a novel virulence factor of the periodontal pathogen Treponema denticola that allows bacteria to evade both defense systems. We show that T-Mac is expressed as a pre-protein that is cleaved into two functional units.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T cell therapy for solid tumors faces significant challenges, including inadequate infiltration, limited proliferation, diminished effector function of CAR T cells, and an immunosuppressive tumor microenvironment (TME). In this study, we utilized The Cancer Genome Atlas database to identify key chemokines (CCL4, CCL5, and CCR5) associated with T cell infiltration across various solid tumor types. The CCL4/CCL5-CCR5 axis emerged as significantly correlated with the presence of T cells within tumors, and enhancing the expression of CCR5 in CAR T cells bolstered their migratory capacity.

View Article and Find Full Text PDF

CXCR2 Activated JAK3/STAT3 Signaling Pathway Exacerbating Hepatotoxicity Associated with Tacrolimus.

Drug Des Devel Ther

January 2025

Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy & School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China.

Purpose: Tacrolimus could induce hepatotoxicity during clinical use, and the mechanism was still unclear, which posed new challenge for the prevention and treatment of tacrolimus-induced hepatotoxicity. The aim of this study was to investigate the mechanism of tacrolimus-induced hepatotoxicity and provide reference for drug development target.

Methods: In this study, biochemical analysis, pathological staining, immunofluorescent staining, immunohistochemical staining, transcriptomic analysis, Western blotting was used to investigate the mechanism of tacrolimus-induced hepatotoxicity in gene knockout mice and Wistar rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!