A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Genetic analysis of somatic cell scores in US Holsteins with a Bayesian mixture model. | LitMetric

The objective of this study was to apply finite mixture models to field data for somatic cell scores (SCS) for estimation of genetic parameters. Data were approximately 170,000 test-day records for SCS from first-parity Holstein cows in Wisconsin. Five different models of increasing level of complexity were fitted. Model 1 was the standard single-component model, and the others were 2-component Gaussian mixtures consisting of similar but distinct linear models. All mixture models (i.e., 2 to 5) included separate means for the 2 components. Model 2 assumed entirely homogeneous variances for both components. Models 3 and 4 assumed heterogeneous variances for either residual (model 3) or genetic and permanent environmental variances (model 4). Model 5 was the most complex, in which variances of all random effects were allowed to vary across components. A Bayesian approach was applied and Gibbs sampling was used to obtain posterior estimates. Five chains of 205,000 cycles were generated for each model. Estimates of variance components were based on posterior means. Models were compared by use of the deviance information criterion. Based on the deviance information criterion, all mixture models were superior to the linear model for analysis of SCS. The best model was one in which genetic and PE variances were heterogeneous, but residual variances were homogeneous. The genetic analysis suggested that SCS in healthy and infected cattle are different traits, because the genetic correlation between SCS in the 2 components of 0.13 was significantly different from unity.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.S0022-0302(07)72645-0DOI Listing

Publication Analysis

Top Keywords

mixture models
12
model
10
genetic analysis
8
somatic cell
8
cell scores
8
model genetic
8
deviance criterion
8
models
7
genetic
6
variances
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!