Mast cells are pivotal effector cells in IgE-mediated allergic reactions. GATA transcriptional factors such as GATA-1 and GATA-2 are expressed in mast cells, and recent studies have revealed that both GATA-1 and GATA-2 are required for mast cell development. However, the role of GATA transcriptional factors in differentiated mast cells has remained largely unknown. In this study, we repressed the activity of GATA-1 and GATA-2 by using three different approaches (inducible overexpression of a dominant-negative form of GATA, pharmacological inactivation, or small interfering RNA technology), and analyzed the molecular mechanisms of GATA transcriptional factors in the activation of mast cells. Surprisingly, the repression of GATA activity in differentiated mast cells led to the impairment of cell survival, IgE-induced degranulation, and cytokine production. Signal transduction and histone modification in the chromatin related to protein kinase Cbeta were defective in these cells. These results identify that GATA has a critical role in the activation of mast cell.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.178.1.360 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!