Treatment of wastewater containing Cu(II)-EDTA using immobilized TiO2/solar light.

J Environ Sci Health A Tox Hazard Subst Environ Eng

Dept of Environmental Eng, Strategy Engineering Corporation, Anyang Gyeonggi, Korea.

Published: February 2007

The photocatalytic oxidation (PCO) of Cu(II)-ethylene diamine tetra-acetic acid (EDTA), employing immobilized TiO2, under natural sunlight rather than artificial UV light conditions, was investigated at a latitude 38 degrees. The immobilized TiO2 film was prepared using a sol gel process, the crystalline structure of which was identified, by X-ray diffraction analysis, as a mixture of the rutile and anatase forms. The PCO of Cu(II)-EDTA was examined in a circulating reactor with 20 L of 10(-4) M Cu(II)-EDTA and synthetic and real wastewaters at pH 4 and 6.5, respectively. The removals of both Cu(II) and DOC were initially relatively rapid, but slowed as the reaction proceeded and generally followed first-order kinetics. The rate constants for the removal of Cu(II) and DOC were 1.1 x 10(-3) and 1.6 x 10(-3) min-1, respectively. The efficiency of the PCO in the decomplexation of Cu(II)-EDTA increased with increasing H2O2 dose using both the synthetic and real wastewaters. Therefore, we suggest the PCO process using the solar/immobilized TiO2 system, with addition of H2O2 as well as filtration for the removal of suspended solids, can be effectively applied to the treatment of Cu(II)-EDTA containing real wastewater.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10934520601011338DOI Listing

Publication Analysis

Top Keywords

immobilized tio2
8
synthetic real
8
real wastewaters
8
cuii doc
8
cuii-edta
5
treatment wastewater
4
wastewater cuii-edta
4
cuii-edta immobilized
4
immobilized tio2/solar
4
tio2/solar light
4

Similar Publications

Additive Manufacturing (AM) was evaluated as a promising technology for constructing photocatalytic reactors due to its inherent ability to produce complex geometries with high precision and customization. In this work, a 3D structure was designed to achieve a good light distribution inside a cylindrical batch reactor and printed using the stereolithography (SLA) technique. A hybrid material composed of a commercial photoreactive resin (Formlabs Clear V4) and the benchmark photocatalyst TiO P25 Evonik (1 wt%) was prepared and characterized by scanning electron microscopy (SEM) and rheological and mechanical methods.

View Article and Find Full Text PDF

Dye-sensitization is a promising strategy to improve the light absorption and photoactivity abilities of wide-bandgap semiconductors, like TiO. For effective water-splitting photoanodes with no sacrificial agents, the electrochemical potential of the dye must exceed the thermodynamic threshold needed for the oxygen evolution reaction. This study investigates two promising organic cyanoacrylic dyes, designed to meet that criterion by means of theoretical calculations.

View Article and Find Full Text PDF

Phthalocyanine-sensitized TiO significantly enhances photocatalytic performance, but the method of phthalocyanine immobilization also plays a crucial role in its performance. In order to investigate the effect of the binding strategy of phthalocyanine and TiO on photocatalytic performance, a dual-pathway study has been conducted. On the one hand, zinc-tetra (-carbonylacrylic) aminephthalocyanine (Pc) was directly grafted onto the surface of FeO@SiO@TiO (FST).

View Article and Find Full Text PDF

Bifunctional Pd-Pt Supported Nanoparticles for the Mild Hydrodeoxygenation and Oxidation of Biomass-Derived Compounds.

ChemSusChem

January 2025

Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, IT-20133, Milano, Italy.

The conversion of bio-based molecules into valuable chemicals is essential for advancing sustainable processes and addressing global resource challenges. However, conventional catalytic methods often demand harsh conditions and suffer from low product selectivity. This study introduces a series of bifunctional PdPt catalysts supported on TiO, designed for achieving selective and mild-temperature catalysis in biomass conversion.

View Article and Find Full Text PDF

Efficient removal of Sb(III) from aqueous solution using TiO precipitated onto waste herb-residue biochar.

Environ Technol

December 2024

College of Resources and Environmental Engineering, Guizhou University, Guiyang, People's Republic of China.

Increasing antimony (Sb) pollution has become a global concern, but there is still a lack of economically efficient adsorbents for its remediation. In this study, a novel remediation material was developed by precipitating TiO onto waste herb-residue biochar (named TBC). The effectiveness and adsorption mechanisms of the material for Sb(III) removal were investigated through adsorption experiments, and the enhancement pathway of traditional herb decoction on the effectiveness of modified biochar was analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!