Background: Research that examines the quality of home health care is complex because no gold standard exists for measuring adverse outcomes, and because the patient and clinician populations are highly heterogeneous. The objectives in this study are to develop models to predict functional decline for three indices of functional status as measures of adverse events in home health care and determine which index is most appropriate for risk-adjusting for future quality research.
Methods: Data come from the Outcomes and Assessment Information Set (OASIS) from a large urban home health care agency and other agency data. Prognostic data yields 49,437 episodes, while follow-up data yields 47,684 episodes. We tested three indices defined as substantial decline in three or more (gt3_ADLs), two or more (gt2_ADLs), and one or more (gt1_ADLs) ADLs. Multivariate logistic regression determines the performance of the models for each index as measured by the c-statistic and Hosmer-Lemeshow chi square (chi2).
Results: Frequencies for gt3_ADLs, gt2_ADLs, and gt1_ADLs are 212 (0.43%), 783 (1.58%), and 4,271 (8.64%) respectively. Follow-up results are comparable with frequencies of 218 (0.46%), 763 (1.60%), and 3,949 (8.28%) for each index. Gt3_ADLs does not produce valid models. The model for gt2_ADLs consistently yields a higher c-statistic compared to gt1_ADLs (0.754 vs. 0.679, respectively). Both indices' models yield non-significant Hosmer-Lemeshow chi square indicating reasonable model fit. Findings for gt2_ADLs and gt1_ADLs are consistent over time as indicated by follow-up data results.
Conclusion: Gt2_ADLs yields the best models as indicated by a high c-statistic and a non-significant Hosmer-Lemeshow chi2, both of which exhibit exceptional consistency. We conclude that gt2_ADLs may be preferable in defining ADL adverse events in the context of home health care.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1774572 | PMC |
http://dx.doi.org/10.1186/1472-6963-6-162 | DOI Listing |
Background: Coronary heart disease (CHD) and depression frequently co-occur, significantly impacting patient outcomes. However, comprehensive health status assessment tools for this complex population are lacking. This study aimed to develop and validate an explainable machine learning model to evaluate overall health status in patients with comorbid CHD and depression.
View Article and Find Full Text PDFAnnu Rev Clin Psychol
January 2025
3Department of Psychology, Stony Brook University, Stony Brook, New York, USA.
Most people with mental health needs cannot access treatment; among those who do, many access services only once. Accordingly, single-session interventions (SSIs) may help bridge the treatment gap. We conducted the first umbrella review synthesizing research on SSIs for mental health problems and service engagement in youth and adults.
View Article and Find Full Text PDFACS Sens
January 2025
Department of Physics and Astronomy, Franklin College of Arts and Sciences, The University of Georgia, Athens, Georgia 30602, United States.
Multiple respiratory viruses can concurrently or sequentially infect the respiratory tract, making their identification crucial for diagnosis, treatment, and disease management. We present a label-free diagnostic platform integrating surface-enhanced Raman scattering (SERS) with deep learning for rapid, quantitative detection of respiratory virus coinfections. Using sensitive silica-coated silver nanorod array substrates, over 1.
View Article and Find Full Text PDFJMIR Res Protoc
January 2025
School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Burwood, Australia.
Background: Heart failure (HF) is a chronic, progressive condition where the heart cannot pump enough blood to meet the body's needs. In addition to the daily challenges that HF poses, acute exacerbations can lead to costly hospitalizations and increased mortality. High health care costs and the burden of HF have led to the emerging application of new technologies to support people living with HF to stay well while living in the community.
View Article and Find Full Text PDFJMIR Cancer
January 2025
Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom.
Background: Skin cancers, including melanoma and keratinocyte cancers, are among the most common cancers worldwide, and their incidence is rising in most populations. Earlier detection of skin cancer leads to better outcomes for patients. Artificial intelligence (AI) technologies have been applied to skin cancer diagnosis, but many technologies lack clinical evidence and/or the appropriate regulatory approvals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!