Personalized medicine is defined by the use of genomic signatures of patients to assign effective therapies. We present Classification by Ensembles from Random Partitions (CERP) for class prediction and apply CERP to genomic data on leukemia patients and to genomic data with several clinical variables on breast cancer patients. CERP performs consistently well compared to the other classification algorithms. The predictive accuracy can be improved by adding some relevant clinical/histopathological measurements to the genomic data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1794434 | PMC |
http://dx.doi.org/10.1186/gb-2006-7-12-r121 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!