AI Article Synopsis

  • The study investigates the role of HIF-1alpha in bone regeneration by creating fractures in mice with different HIF-1alpha gene expressions (HIF-1alpha+/- and HIF-1alpha+/+).
  • Results showed that fractures from HIF-1alpha+/- mice had larger, stronger, and stiffer calluses due to reduced apoptosis.
  • The findings suggest that inhibiting apoptosis can enhance bone regeneration, contrary to the initial hypothesis that HIF-1alpha would be a key regulator in this process.

Article Abstract

Unlabelled: HIF-1alpha activates genes under hypoxia and was hypothesized to regulate bone regeneration. Surprisingly, HIF-1alpha+/- fracture calluses are larger, stronger, and stiffer than HIF-1alpha+/+ calluses because of decreased apoptosis. These data identify apoptosis inhibition as a means to enhance bone regeneration.

Introduction: Bone regeneration subsequent to fracture involves the synergistic activation of multiple signaling pathways. Localized hypoxia after fracture activates hypoxia-inducible factor 1alpha (HIF-1alpha), leading to increased expression of HIF-1 target genes. We therefore hypothesized that HIF-1alpha is a key regulator of bone regeneration.

Materials And Methods: Fixed femoral fractures were generated in mice with partial HIF-1alpha deficiency (HIF-1alpha+/-) and wildtype littermates (HIF-1alpha+/+). Fracture calluses and intact contralateral femurs from postfracture days (PFDs) 21 and 28 (N=5-10) were subjected to microCT evaluation and four-point bending to assess morphometric and mechanical properties. Molecular analyses were carried out on PFD 7, 10, and 14 samples (N=3) to determine differential gene expression at both mRNA and protein levels. Finally, TUNEL staining was performed on PFD 14 samples (N=2) to elucidate differential apoptosis.

Results: Surprisingly, fracture calluses from HIF-1alpha+/- mice exhibited greater mineralization and were larger, stronger, and stiffer. Microarray analyses focused on hypoxia-induced genes revealed differential expression (between genotypes) of several genes associated with the apoptotic pathway. Real-time PCR confirmed these results, showing higher expression of proapoptotic protein phosphatase 2a (PP2A) and lower expression of anti-apoptotic B-cell leukemia/lymphoma 2 (BCL2) in HIF-1alpha+/+ calluses. Subsequent TUNEL staining showed that HIF-1alpha+/+ calluses contained larger numbers of TUNEL+ chondrocytes and osteoblasts than HIF-1alpha+/- calluses.

Conclusions: We conclude that partial HIF-1alpha deficiency results in decreased chondrocytic and osteoblastic apoptosis, thereby allowing the development of larger, stiffer calluses and enhancing bone regeneration. Furthermore, apoptosis inhibition may be a promising target for developing new treatments to accelerate bone regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2268762PMC
http://dx.doi.org/10.1359/jbmr.061207DOI Listing

Publication Analysis

Top Keywords

bone regeneration
20
partial hif-1alpha
12
hif-1alpha deficiency
12
fracture calluses
12
hif-1alpha+/+ calluses
12
decreased apoptosis
8
mice partial
8
larger stronger
8
stronger stiffer
8
apoptosis inhibition
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!