Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The metastable phase diagram of the two-component system heptyloxycyanobiphenyl (7OCB)+nonyloxycyanobiphenyl (9OCB) was determined by means of modulated differential scanning calorimetry (MDSC) and optical microscopy measurements. It was experimentally established that the 7OCB+9OCB two-component system exhibits a monotropic re-entrant nematic behavior. A complete quantitative thermodynamic analysis, through Oonk's equal G analysis, was performed, allowing for the calculation of the monotropic re-entrant behavior and the prediction of two tricritical points, one of them experimentally accessible for the SmAd-to-N transition and the other non-experimentally accessible for the RN-to-SmAd transition. From specific-heat measurements, latent heats were obtained for those mixtures displaying a first-order SmAd-to-N transition. Additionally, for some mixtures, the specific-heat critical exponents (alpha), through the second-order SmAd-to-N transition, were obtained. Both batches of data enable us to access to the experimental tricritical temperature for the SmAd-to-N transition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp0642286 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!