A new approach of engineering of molecular gels was established on the basis of a nucleation-initiated network formation mechanism. A variety of gel network structures can be obtained by regulating the starting temperature of the sol-gel transition. This enables us to tune the network from the spherulitic domains pattern to the extensively interconnected fibrillar network. As the consequence of fibrous network structure turning, desirable rheological and other in-use properties of the materials can be obtained accordingly. This approach of micro-/nanostructural fabrication may open up a new route for micro-/nanofunctional materials engineering in general.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp065101j | DOI Listing |
Biochemistry
January 2025
Department of Chemistry, University of California, Berkeley, California 94720, United States.
In many bacteria, the location of the mRNA start codon is determined by a short ribosome binding site sequence that base pairs with the 3'-end of 16S rRNA (rRNA) in the 30S subunit. Many groups have changed these short sequences, termed the Shine-Dalgarno (SD) sequence in the mRNA and the anti-Shine-Dalgarno (ASD) sequence in 16S rRNA, to create "orthogonal" ribosomes to enable the synthesis of orthogonal polymers in the presence of the endogenous translation machinery. However, orthogonal ribosomes are prone to SD-independent translation.
View Article and Find Full Text PDFACS Nano
January 2025
School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China.
Single-crystal Au(111), renowned for its chemically inert surface, long-range "herringbone" reconstruction, and high electrical conductivity, has long served as an exemplary template in diverse fields, , crystal epitaxy, electronics, and electrocatalysis. However, commercial Au(111) products are high-priced and limited to centimeter sizes, largely restricting their broad applications. Herein, a low-cost, high-reproducible method is developed to produce 4 in.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
Metal nanoclusters (NCs), owing to their atomic precision and unique molecule-like properties, have gained widespread attention for applications ranging from catalysis to bioimaging. In recent years, proteins, with their hierarchical structures and diverse functionalities, have emerged as good candidates for functionalizing metal NCs, rendering metal NC-protein conjugates with combined and even synergistically enhanced properties featured by both components. In this Perspective, we explore key questions regarding why proteins serve as complementary partners for metal NCs, the methodologies available for conjugating proteins with metal NCs, and the characterization techniques necessary to elucidate the structures and interactions within this emerging bionano system.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China.
Chlorine radicals (Cl) are highly reactive and affect the fate of air pollutants. Several field studies in China have revealed elevated levels of daytime molecular chlorine (Cl), which, upon photolysis, release substantial amounts of Cl but are poorly represented in current chemical transport models. Here, we implemented a parametrization for the formation of daytime Cl through the photodissociation of particulate nitrate in acidic environments into a regional model and assessed its impact on coastal air quality during autumn in South China.
View Article and Find Full Text PDFLangmuir
January 2025
Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Street, Zhejiang, Hangzhou 310018, China.
Molecule-electrode interfaces play a pivotal role in defining the electron transport properties of molecular electronic devices. While extensive research has concentrated on optimizing molecule-electrode coupling (MEC) involving electrode materials and molecular anchoring groups, the role of the molecular backbone structure in modulating MEC is equally vital. Additionally, it is known that the incorporation of heteroatoms into the molecular backbone notably influences factors such as energy levels and conductive characteristics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!