Synthesis and Src kinase inhibitory activity of a series of 4-[(2,4-dichloro-5-methoxyphenyl)amino]-7-furyl-3-quinolinecarbonitriles.

J Med Chem

Chemical and Screening Sciences and Oncology, Wyeth Research, 401 North Middletown Road, Pearl River, NY 10965, USA.

Published: December 2006

Compound 1 (SKI-606, bosutinib), a 7-alkoxy-4-[(2,4-dichloro-5-methoxyphenyl)amino]-3-quinolinecarbonitrile, is a potent inhibitor of Src kinase activity. We previously reported that analogs of 1 with thiophene groups at C-7 retained the Src activity of the parent compound. The corresponding C-7 furan analogs were prepared and it was found that the 3,5-substituted furan analog had increased activity compared to that of the 2,5-substituted furan isomer. Addition of a methoxy group at C-6 decreased the Src inhibitory activity of the C-7 2,5-substituted furan analog but increased the activity of the C-7 3,5-substituted furan isomer. This compound, 10, was a more potent Src inhibitor than 1 in both enzymatic and cell-based assays. The kinase selectivity profile of 10 was similar to that of 1, with 10 also inhibiting the activity of Abl and Lck. When tested in a solid tumor xenograft model, 10 had comparable oral activity to that of 1.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm061031tDOI Listing

Publication Analysis

Top Keywords

src kinase
8
activity
8
inhibitory activity
8
35-substituted furan
8
furan analog
8
analog increased
8
increased activity
8
25-substituted furan
8
furan isomer
8
activity c-7
8

Similar Publications

In this study, new 2-indolinone-indole hybrid compounds (4a-s) carrying a benzoyl moiety were synthesized and their cytotoxic effects were examined against pancreatic (MIA-PaCa-2) and colon (HT-29 and HCT-116) cancer cells by MTT assays. Most of the tested compounds exhibited a better inhibitory activity and safety profile than the reference standard sunitinib malate against MIA-PaCa-2 and HCT-116 cancer cells. Compound 4e displayed the greatest cytotoxic effect on HCT-116 cell with an IC value of 0.

View Article and Find Full Text PDF

A promising future for breast cancer therapy with hydroxamic acid-based histone deacetylase inhibitors.

Bioorg Chem

January 2025

Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India. Electronic address:

Histone deacetylases (HDACs) play a critical role in chromatin remodelling and modulating the activity of various histone proteins. Aberrant HDAC functions has been related to the progression of breast cancer (BC), making HDAC inhibitors (HDACi) promising small-molecule therapeutics for its treatment. Hydroxamic acid (HA) is a significant pharmacophore due to its strong metal-chelating ability, HDAC inhibition properties, MMP inhibition abilities, and more.

View Article and Find Full Text PDF

Identification of Immune Infiltration-Associated CC Motif Chemokine Ligands as Biomarkers and Targets for Colorectal Cancer Prevention and Immunotherapy.

Int J Mol Sci

January 2025

Centre of Biomedical Systems and Informatics, ZJU-UoE Institute, School of Medicine, International Campus, Zhejiang University, Haining 314400, China.

Colorectal cancer (CRC) is the third most common cancer globally, with limited effective biomarkers and sensitive therapeutic targets. An increasing number of studies have highlighted the critical role of tumor microenvironment (TME) imbalances, particularly immune escape due to impaired chemokine-mediated trafficking, in tumorigenesis and progression. Notably, CC chemokines (CCLs) have been shown to either promote or inhibit angiogenesis, metastasis, and immune responses in tumors, thereby influencing cancer development and patient outcomes.

View Article and Find Full Text PDF

The Src homology 2 domain-containing inositol 5-phosphatase 1 (SHIP1) is a multidomain protein consisting of two protein-protein interaction domains, the Src homology 2 (SH2) domain, and the proline-rich region (PRR), as well as three phosphoinositide-binding domains, the pleckstrin homology-like (PHL) domain, the 5-phosphatase (5PPase) domain, and the C2 domain. SHIP1 is commonly known for its involvement in the regulation of the PI3K/AKT signaling pathway by dephosphorylation of phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P) at the D5 position of the inositol ring. However, the functional role of each domain of SHIP1 for the regulation of its enzymatic activity is not well understood.

View Article and Find Full Text PDF

CASK, a MAGUK family scaffold protein, regulates gene expression as a transcription co-activator in neurons. However, the mechanism of CASK nucleus translocation and the regulatory function of CASK in myeloid cells remains unclear. Here, we investigated its role in H5N1-infected macrophages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!