Purpose: We investigated the tissue distribution of a humanized anti-human Fas monoclonal antibody, R-125224, in SCID mice transplanted with synovial tissues from patients with rheumatoid arthritis (SCID-HuRAg mice). The binding kinetics of R-125224 was also determined, using isolated human synovial cells.

Materials And Methods: Tissue distribution was assessed at 1, 24 and 168 h after intravenous administration of (125)I-R-125224 to SCID-HuRAg mice (0.4 mg/kg). The in vitro binding of (125)I-R-125224 to isolated human synovial cells was investigated.

Results: After intravenous administration of (125)I-R-125224 to SCID-HuRAg mice, the radioactivity distributed to various tissues at 1 h. Thereafter, the radioactivity in the tissues gradually decreased except for the transplanted synovial tissues, in which the radioactivity increased in a time-dependent manner, and at 168 h, the tissue/plasma concentration ratio was about 1. The in vitro binding affinity of (125)I-R-125224 to human synovial cells was high with a dissociation constant of 1.32 +/- 0.62 nM and the binding was inhibited by non-labeled R-125224 in a concentration-dependent manner.

Conclusion: R-125224, a candidate compound for treating rheumatoid arthritis, specifically distributed to the pharmacological target site, human synovium transplanted in SCID mice, with high affinity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11095-006-9148-5DOI Listing

Publication Analysis

Top Keywords

scid mice
12
rheumatoid arthritis
12
scid-hurag mice
12
human synovial
12
mice transplanted
8
anti-human fas
8
antibody r-125224
8
human synovium
8
tissue distribution
8
transplanted synovial
8

Similar Publications

ErbB3 is markedly overexpressed in breast cancer cells and is associated with resistance and metastasis. Additionally, ErbB3 expression levels are positively correlated with low densities of tumor-infiltrating lymphocytes, a marker of poor prognosis. Consequently, ErbB3 is a promising therapeutic target for cancer immunotherapy.

View Article and Find Full Text PDF

Background/aim: Angiogenesis imaging has been a valuable complement to metabolic imaging with 2-deoxy-2-[F]fluoroglucose (FDG). In our longitudinal study, we investigated the tumour heterogeneity and the relationship between FDG and [Ga]Ga-NODAGA-c(RGDfK) (RGD) accumulation in breast cancer xenografts.

Materials And Methods: Two groups of cell lines, a fast-growing (4T1) and a slow-growing cell line (MDA-MB-HER2+), were inoculated into SCID mice.

View Article and Find Full Text PDF

Salivary adenoid cystic carcinoma (SACC) is an intractable malignant tumor originates in the secretory glands and frequently metastasizes to the lungs. Hybrid epithelial-mesenchymal transition (EMT) cells within the tumors are correlated with augmented proliferative capacity and facilitation of lung metastasis. Single-cell RNA sequencing and spatial transcriptomic sequencing are employed to reveal the hybrid EMT subsets within the vascular fibroblast microenvironment.

View Article and Find Full Text PDF

Background: Genetically immunodeficient mice lacking Il2rg and Rag2 genes have been widely utilized in the field of biomedical research. However, immunodeficient rats, which offer the advantage of larger size, have not been as extensively used to date. Recently, Severe Combined Immunodeficiency (SCID) rats were generated using CRISPR/Cas9 system, targeting Il2rg and Rag2 in National BioResource Project in Japan.

View Article and Find Full Text PDF

Background & Aims: GD2, a member of the ganglioside (GS) family (sialic acid-containing glycosphingolipids), is a potential biomarker of cancer stem cells (CSC) in several tumours. However, the possible role of GD2 and its biosynthetic enzyme, GD3 synthase (GD3S), in intrahepatic cholangiocarcinoma (iCCA) has not been explored.

Methods: The stem-like subset of two iCCA cell lines was enriched by sphere culture (SPH) and compared to monolayer parental cells (MON).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!