Gravisusception by buoyancy: a mechanism ubiquitous among fungi?

Protoplasma

Pflanzenphysiologie und Photobiologie, Fachbereich Biologie, Philipps-Universität, Marburg, Federal Republic of Germany.

Published: December 2006

Gravitropism is ubiquitous among the fungal taxa; however, the mechanism(s) of gravisusception have overall remained obscure so far. In the vegetative sporangiophore of the zygomycete Phycomyces blakesleeanus some 200 large lipid globules form a conspicuous spherical complex which is positioned in a dense mesh of filamentous actin about 100 microm below the growing tip of the apex. Experimental suppression of that complex by transient growth at low temperature greatly diminishes the gravitropic response of the sporangiophore. With respect to size and abundance of the globules, the complex of lipid globules meets basic physical criteria for a possible function of gravisusception. Accumulations of similar lipid globules of critical size are documented in the apex of gravitropically growing hyphae of the endomycorrhizal fungus Gigaspora margarita (Glomeromycota) and have been described in the hyphal apices of members of various fungal phyla. We suppose that--in contrast to plants which use starch as a carbon storage and amyloplasts as statoliths--the fungi utilise the buoyancy of carbon-storing oil droplets for gravisusception.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00709-006-0218-7DOI Listing

Publication Analysis

Top Keywords

lipid globules
12
gravisusception
4
gravisusception buoyancy
4
buoyancy mechanism
4
mechanism ubiquitous
4
ubiquitous fungi?
4
fungi? gravitropism
4
gravitropism ubiquitous
4
ubiquitous fungal
4
fungal taxa
4

Similar Publications

Introduction: Androgenetic alopecia (AGA) is a multifactorial and age-related dermatological disease that affects both males and females, usually at older ages. Traditional hair repair drugs exemplified by minoxidil have limitations such as skin irritation and hypertrichosis. Thus, attention has been shifted to the use of repurposing drugs.

View Article and Find Full Text PDF

We hypothesized that improving the fat globule structure of infant formulae based on the milk fat globule membrane (MFGM) would regulate metabolites and metabolic pathways, making it more similar to the metabolic properties of human milk. Therefore, we prepared infant formulae with different fat globule structures, including two model infant formulae (F1: fat globules surrounded by MFGM; F2: fat globules surrounded by protein) and one commercial infant formulae containing MFGM, and compared their metabolic differences with those of human milk. The number of differential metabolites between each sample and human milk reached 60 (F1), 132 (F2) and 126 (IF1).

View Article and Find Full Text PDF

A study of the lipidome and proteome was performed on milk fat globule membranes (MFGM) originating from milk samples from high (HL) and low (LL) lipolysis groups of cows. Combined univariate and multivariate statistical analyses proposed a set of variables highly associated to contrasted samples with regard to milk lipolysis. Milk from HL group were related to 4 phosphatidylinositols, 8 phosphatidylcholines, 1 sphingomyelin and 27 proteins, among them the phosphatidylcholine/phosphatidylethanolamine ratio and ORM1 may contribute to the membrane remodeling of the MFGM.

View Article and Find Full Text PDF

The influence of temperature induced changes in the composition of MFGM on membrane phase transition and nanomechanical properties.

Food Res Int

January 2025

State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; Inner Mongolia Yili Industrial Group Co., Ltd, Hohhot, China. Electronic address:

Biomimetic membrane was investigated as model systems to mimic the structure of milk fat globule membrane (MFGM) and to study the effects of thermal processing-induced changes in MFGM fractions on membrane morphology and physical properties. Molecular docking was utilized to screen xanthine oxidase (XO) as the MFGM protein most likely to bind to phospholipid molecules on MFGM. Fluorescence spectroscopy verified that XO formed stable complexes with DOPE, DPPC, and PS 18:0-18:1, with the strongest binding to DOPE.

View Article and Find Full Text PDF

Intrauterine growth restriction (IUGR) caused by placental dysfunctions leads to fetal growth defects. Maternal microbiome and its metabolites have been reported to promote placental development. Milk fat globule membrane (MFGM) is known for its diverse bioactive functions, while the effects of gestational MFGM supplementation on the maternal gut microbiota, placental efficiency, and fetal development remained unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!