Importance of the trans-sulfuration pathway in cancer prevention and promotion.

Mol Cell Biochem

Instituto de Biotecnologia/Departamento de Ciências Biomédicas, Laboratório de Genética Toxicológica-206, Universidade de Caxias do Sul, Rua Francisco Getúlio Vargas 1130-Bloco 57, Caxias do Sul, RS, Brazil.

Published: July 2007

The trans-sulfuration pathway is a biochemical mechanism that links methionine metabolism to the biosynthesis of cellular redox-controlling molecules, like cysteine, glutathione, and taurine. While there is some knowledge about the metabolic intermediates and enzymes that participate in trans-sulfuration, little is known about the physiological importance of this mechanism. Deficiencies within the trans-sulfuration pathway induces (i) the generation of reactive species of oxygen (ROS) and halogens (RHS), (ii) homocyst(e)ine accumulation, and (iii) the synthesis of proinflammatory molecules by macrophages, and contribute to humans pathologies like atherosclerosis and tumor development. In this review we outline the role of this biochemical pathway in tumor development and analyze current findings on the role of trans-sulfuration in mammalian physiology. The potential relationship between chronic inflammation, and tumor and atherosclerotic development are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11010-006-9389-yDOI Listing

Publication Analysis

Top Keywords

trans-sulfuration pathway
12
tumor development
8
trans-sulfuration
5
pathway cancer
4
cancer prevention
4
prevention promotion
4
promotion trans-sulfuration
4
pathway biochemical
4
biochemical mechanism
4
mechanism links
4

Similar Publications

Background/objectives: Chronic gut dysbiosis due to a high-fat diet (HFD) instigates cardiac remodeling and heart failure with preserved ejection fraction (HFpEF), in particular, kidney/volume-dependent HFpEF. Studies report that although mitochondrial ATP citrate lyase (ACLY) supports cardiac function, it decreases more in human HFpEF than HFrEF. Interestingly, ACLY synthesizes lipids and creates hyperlipidemia.

View Article and Find Full Text PDF

Medulloblastoma (MB) is the most common malignant brain tumor in children, typically arising during infancy and childhood. Despite multimodal therapies achieving a response rate of 70% in children older than 3 years, treatment remains challenging. Ferroptosis, a form of regulated cell death, can be induced in medulloblastoma cells in vitro using erastin or RSL3.

View Article and Find Full Text PDF

Hyperhomocysteinemia (HHcy) is a medical condition characterized by an abnormally high level of homocysteine (Hcy) in the blood. Homocysteine is a toxic sulfur-containing amino acid that is produced during the metabolism of methionine. Under normal circumstances, Hcy is recycled back to methionine via the remethylation pathway, through the action of various enzymes and vitamins, particularly folic acid (vitamin B9) and B12 used when intracellular methionine levels are low, thus restoring the necessary levels to correctly maintain active protein synthesis.

View Article and Find Full Text PDF

Cystathionine γ-lyase (CSE) is the second enzyme in the trans-sulfuration pathway that converts cystathionine to cysteine. It is also one of three major enzymes responsible for the biosynthesis of hydrogen sulfide (HS). CSE is believed to be the major source of endogenous HS in the cardiovascular system, and the CSE/HS system plays a crucial role in a variety of physiological and pathological processes.

View Article and Find Full Text PDF

In yeast, control of sulfur amino acid metabolism relies upon Met4, a transcription factor that activates the expression of a network of enzymes responsible for the biosynthesis of cysteine and methionine. In times of sulfur abundance, the activity of Met4 is repressed via ubiquitination by the SCFMet30 E3 ubiquitin ligase, but the mechanism by which the F-box protein Met30 senses sulfur status to tune its E3 ligase activity remains unresolved. Herein, we show that Met30 responds to flux through the trans-sulfuration pathway to regulate the MET gene transcriptional program.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!