The trans-sulfuration pathway is a biochemical mechanism that links methionine metabolism to the biosynthesis of cellular redox-controlling molecules, like cysteine, glutathione, and taurine. While there is some knowledge about the metabolic intermediates and enzymes that participate in trans-sulfuration, little is known about the physiological importance of this mechanism. Deficiencies within the trans-sulfuration pathway induces (i) the generation of reactive species of oxygen (ROS) and halogens (RHS), (ii) homocyst(e)ine accumulation, and (iii) the synthesis of proinflammatory molecules by macrophages, and contribute to humans pathologies like atherosclerosis and tumor development. In this review we outline the role of this biochemical pathway in tumor development and analyze current findings on the role of trans-sulfuration in mammalian physiology. The potential relationship between chronic inflammation, and tumor and atherosclerotic development are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11010-006-9389-y | DOI Listing |
Nutrients
January 2025
Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
Background/objectives: Chronic gut dysbiosis due to a high-fat diet (HFD) instigates cardiac remodeling and heart failure with preserved ejection fraction (HFpEF), in particular, kidney/volume-dependent HFpEF. Studies report that although mitochondrial ATP citrate lyase (ACLY) supports cardiac function, it decreases more in human HFpEF than HFrEF. Interestingly, ACLY synthesizes lipids and creates hyperlipidemia.
View Article and Find Full Text PDFAntioxidants (Basel)
January 2025
Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, F-75006 Paris, France.
Medulloblastoma (MB) is the most common malignant brain tumor in children, typically arising during infancy and childhood. Despite multimodal therapies achieving a response rate of 70% in children older than 3 years, treatment remains challenging. Ferroptosis, a form of regulated cell death, can be induced in medulloblastoma cells in vitro using erastin or RSL3.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Biomolecular Diagnostic Laboratories, Via N. Porpora, 50144 Florence, Italy.
Hyperhomocysteinemia (HHcy) is a medical condition characterized by an abnormally high level of homocysteine (Hcy) in the blood. Homocysteine is a toxic sulfur-containing amino acid that is produced during the metabolism of methionine. Under normal circumstances, Hcy is recycled back to methionine via the remethylation pathway, through the action of various enzymes and vitamins, particularly folic acid (vitamin B9) and B12 used when intracellular methionine levels are low, thus restoring the necessary levels to correctly maintain active protein synthesis.
View Article and Find Full Text PDFAntioxidants (Basel)
November 2024
School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
Cystathionine γ-lyase (CSE) is the second enzyme in the trans-sulfuration pathway that converts cystathionine to cysteine. It is also one of three major enzymes responsible for the biosynthesis of hydrogen sulfide (HS). CSE is believed to be the major source of endogenous HS in the cardiovascular system, and the CSE/HS system plays a crucial role in a variety of physiological and pathological processes.
View Article and Find Full Text PDFGenetics
November 2024
Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038, USA.
In yeast, control of sulfur amino acid metabolism relies upon Met4, a transcription factor that activates the expression of a network of enzymes responsible for the biosynthesis of cysteine and methionine. In times of sulfur abundance, the activity of Met4 is repressed via ubiquitination by the SCFMet30 E3 ubiquitin ligase, but the mechanism by which the F-box protein Met30 senses sulfur status to tune its E3 ligase activity remains unresolved. Herein, we show that Met30 responds to flux through the trans-sulfuration pathway to regulate the MET gene transcriptional program.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!