The synthesis and the photophysical evaluation of a novel pH dependent lanthanide luminescent self-assembly in water between a cyclen based europium complex and a beta-diketonate is described and its use as a luminescent sensor in displacement assays for anions such as acetate, bicarbonate and lactate, where the Eu(III) emission was quenched upon anion recognition.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b611487cDOI Listing

Publication Analysis

Top Keywords

driven self-assembly
4
self-assembly ternary
4
ternary lanthanide
4
lanthanide luminescence
4
luminescence complex
4
complex sensing
4
sensing anions
4
anions beta-diketonate-euiii
4
beta-diketonate-euiii displacement
4
displacement assay
4

Similar Publications

Precise Preparation of Size-Uniform Two-Dimensional Platelet Micelles Through Crystallization-Assisted Rapid Microphase Separation Using All-Bottlebrush-Type Block Copolymers with Crystalline Side Chains.

J Am Chem Soc

January 2025

Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China.

Polymer nanoparticles with low curvature, especially two-dimensional (2D) soft materials, are rich in functions and outstanding properties and have received extensive attention. Crystallization-driven self-assembly (CDSA) of linear semicrystalline block copolymers is currently a common method of constructing 2D platelets of uniform size. Although accompanied by high controllability, this CDSA method usually and inevitably requires a longer aging time and lower assembly concentration, limiting the large-scale preparation of nanoaggregates.

View Article and Find Full Text PDF

Magnetic Nanoactuator-Protein Fiber Coated Hydrogel Dressing for Well-Balanced Skin Wound Healing and Tissue Regeneration.

ACS Nano

January 2025

State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, P. R. China.

Despite significant progress in skin wound healing, it is still a challenge to construct multifunctional bioactive dressings based on a highly aligned protein fiber coated hydrogel matrix for antifibrosis skin wound regeneration that is indistinguishable to native skin. In this study, a "dual-wheel-driven" strategy is adopted to modify the surface of methacrylated gelatin (GelMA) hydrogel with highly aligned magnetic nanocomposites-protein fiber assemblies (MPF) consisting of photothermal responsive antibacteria superparamagnetic nanocomposites-fibrinogen (Fg) complexes as the building blocks. Whole-phase healing properties of the modified hydrogel dressing, GelMA-MPF (GMPF), stem from the integration of Fg protein with RGD peptide activity decorated on the surface of the antibacterial magnetic nanoactuator, facilitating facile and reproducible dressing preparation by self-assembly and involving biochemical, morphological, and biophysical cues.

View Article and Find Full Text PDF
Article Synopsis
  • Nano-self-assembly of natural organic matter (NOM) plays a critical role in affecting both NOM and pollutant dynamics in complex environments, highlighting the need for advanced analysis methods.
  • Machine learning (ML) is proposed as a valuable tool for interpreting NOM self-assembly processes by utilizing big data to explore structure-property relationships and environmental impacts.
  • The review emphasizes the importance of developing new ML algorithms and frameworks to address challenges in data interpretation, while also proposing an integrated research approach that combines ML, experiments, and theoretical models for better understanding NOM-related environmental issues.
View Article and Find Full Text PDF

The self-assembly of hydrophobic organic phototherapeutic agents (OPTAs) with expansive planar structures into nanoparticles (NPs) represents a pivotal strategy to bolster their biocompatibility. However, the tight molecular packing within these NPs significantly influences the generation of reactive oxygen species (ROS) and the photothermal conversion efficiency (PCE), posing a substantial hurdle to elevating the efficacy of photodynamic therapy (PDT) and photothermal therapy (PTT) for such NPs. In this article, three OPTAs by donor engineering are synthesized.

View Article and Find Full Text PDF

Enhancing photocatalytic hydrogen evolution of carbon nitride through high-valent cobalt active sites in cobalt sulfide co-catalyst.

J Colloid Interface Sci

December 2024

School of Materials Science & Engineering, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Zotye Automobile Co., Ltd, Jinhua 321399, PR China. Electronic address:

Article Synopsis
  • Photocatalytic hydrogen production using solar energy is an effective solution for energy and environmental issues, but inefficiencies arise from the rapid recombination of charges in semiconductor catalysts.
  • Researchers used a co-catalyst loading strategy, specifically incorporating cobalt sulfide (CoS) onto bulk carbon nitride (BCN), to enhance photocatalytic performance for hydrogen production.
  • The optimal CoS-BCN composite (with 15% CoS) showed a performance improvement of 156 times compared to BCN alone, as CoS nanoparticles facilitate electron transfer and reduce charge recombination, enhancing hydrogen evolution efficiency.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!