Late infantile neuronal ceroid lipofuscinosis (LINCL) is a lysosomal storage disorder caused by mutations in the CLN2 gene and a deficiency of tripeptidyl peptidase I (TPP-I). Prior studies with adeno-associated virus (AAV) serotype 2 or 5 mediated transfer of the CLN2 complementary DNA to the central nervous system (CNS) of CLN2(-/-) mice cleared CNS storage granules, but provided no improvement in the phenotype or survival of this model of LINCL. In this study, AAV serotypes (AAV2, AAV5, AAV8, and AAVrh.10) were compared for the delivery of the same CLN2 expression cassette. AAVrh.10, derived from rhesus macaque, provided the highest TPP-I level and maximum spread beyond the site of injection. The AAVrh.10-based vector functioned equally well in naive rats and in rats previously immunized against human serotypes of AAV. When administered to the CNS of CLN2(-/-) mice, the AAVrh.10CLN2 vector provided widespread TPP-I activity comparable to that in the wild-type mice. Importantly, the AAVrh.10CLN2-treated CLN2(-/-) mice had significant reduction in CNS storage granules and demonstrated improvement in gait, nest-making abilities, seizures, balance beam function, and grip strength, as well as having a survival advantage.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.mt.6300049DOI Listing

Publication Analysis

Top Keywords

cln2-/- mice
12
cln2 gene
8
adeno-associated virus
8
cns cln2-/-
8
cns storage
8
storage granules
8
enhanced survival
4
survival lincl
4
lincl mouse
4
cln2
4

Similar Publications

Children with neurodegenerative disease often have debilitating gastrointestinal symptoms. We hypothesized that this may be due at least in part to underappreciated degeneration of neurons in the enteric nervous system (ENS), the master regulator of bowel function. To test this hypothesis, we evaluated mouse models of neuronal ceroid lipofuscinosis type 1 and 2 (CLN1 and CLN2 disease, respectively), neurodegenerative lysosomal storage disorders caused by deficiencies in palmitoyl protein thioesterase-1 and tripeptidyl peptidase-1, respectively.

View Article and Find Full Text PDF

GABAergic interneuron deficits have been implicated in the epileptogenesis of multiple neurological diseases. While epileptic seizures are a key clinical hallmark of CLN2 disease, a childhood-onset neurodegenerative lysosomal storage disorder caused by a deficiency of tripeptidyl peptidase 1 (TPP1), the etiology of these seizures remains elusive. Given that mice display fatal spontaneous seizures and an early loss of several cortical interneuron populations, we hypothesized that those two events might be causally related.

View Article and Find Full Text PDF

Batten disease is a group of mostly pediatric neurodegenerative lysosomal storage disorders caused by mutations in the CLN1-14 genes. We have recently shown that acidified drinking water attenuated neuropathological changes and improved motor function in the Cln1 and Cln3 mouse models of infantile CLN1 and juvenile CLN3 diseases. Here we tested if acidified drinking water has beneficial effects in Cln2 mice, a nonsense mutant model of late infantile CLN2 disease.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed a new drug delivery system using extracellular vesicles (EVs) to transport the enzyme TPP1 to treat Batten disease.
  • A single injection of TPP1-loaded EVs showed over 20% delivery efficiency to the brain and demonstrated cumulative therapeutic effects in a mouse model.
  • The EV-TPP1 treatment activated the autophagy pathway, reduced harmful lipofuscin aggregates, decreased inflammation, and improved neuron survival, highlighting the potential for enhancing brain health.
View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on understanding the neurological and pathological changes in Cln2R207X mice, which model a mutation related to CLN2 disease, revealing progressive seizures and neuron loss over time.
  • Early signs of brain inflammation, such as microglial activation and astrogliosis, were observed before the loss of neurons, indicating a critical timeline in the disease's progression that differs from other forms of neuronal ceroid lipofuscinosis.
  • Gene therapy using adeno-associated virus serotype 9 improved symptoms and pathology in the mice, highlighting the need for effective measures to evaluate therapies for CLN2 disease.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!