Clusterin, a secretory glycoprotein, has been shown to be up-regulated in the reactive astrocytes in response to brain injury and neurodegenerative diseases, but its function has not been clearly elucidated. In this study, we investigate whether clusterin has growth-stimulatory activity in astrocytes. Suppression of clusterin with antisense oligonucleotide induced growth arrest, whereas transient overexpression of clusterin by cDNA transfection or exogenous treatment with purified clusterin promoted proliferation of the primary astrocytes in culture. This clusterin-stimulated proliferation was abrogated by PD98059, an inhibitor of mitogen-activated protein kinase kinase. These results suggest that clusterin might play an important role in astrogliosis by stimulating the proliferation of astrocytes through activation of the extracellular signal-regulated kinase 1/2 signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1097/WNR.0b013e328010ac99DOI Listing

Publication Analysis

Top Keywords

proliferation primary
8
primary astrocytes
8
extracellular signal-regulated
8
signal-regulated kinase
8
clusterin
7
astrocytes
5
clusterin enhances
4
proliferation
4
enhances proliferation
4
astrocytes extracellular
4

Similar Publications

Melanoma is an aggressive type of skin cancer that arises from melanocytes, the cells responsible for producing skin pigment. In contrast to non-melanoma skin cancers like basal cell carcinoma and squamous cell carcinoma, melanoma is more invasive. Melanoma was distinguished by its rapid progression, high metastatic potential, and significant resistance to conventional therapies.

View Article and Find Full Text PDF

Sprayable Hydrogel for pH-Responsive Nanozyme-Derived Bacteria-Infected Wound Healing.

ACS Appl Mater Interfaces

January 2025

School of Chemistry & Materials Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, P. R. China.

Long-term inflammation and persistent bacterial infection are primary contributors to unhealed chronic wounds. The use of conventional antibiotics often leads to bacteria drug resistance, diminishing wound healing effectiveness. Nanozymes have become a promising alternative to antimicrobial materials due to their low cost, easy synthesis, and good stability.

View Article and Find Full Text PDF

Background: Anti-angiogenic agents, such as nintedanib and ramucirumab, when combined with docetaxel, are subsequent treatment options in patients with non-small cell lung cancer (NSCLC) who have failed on first-line chemotherapy or immunochemotherapy. However, to date, there are no validated predictive biomarkers for efficacy of anti-angiogenic therapies in this setting. The aim of this study was to explore whether genetic or genomic markers, alone or combined with clinical covariates, could be used to predict overall survival (OS) in patients with NSCLC who are eligible for treatment with nintedanib plus docetaxel.

View Article and Find Full Text PDF

Background and objectives The persistent nature of diabetic foot ulcers (DFUs) is mainly attributable to compromised wound healing mechanisms, which are aggravated due to poor blood flow, neuropathy, and infection. Growth factors have become essential agents in the treatment of DFUs, serving as primary mediators that enhance wound healing through the stimulation of cell proliferation, migration, and angiogenesis. This prospective open-label, randomised, comparative, multi-centre, investigator-initiated study compared the safety and effectiveness of adjuvant therapy with topical application of autologous growth factor concentrate (AGFC) using the Healrex therapy kit (Wockhardt, India) versus standard of care (SoC) in DFUs.

View Article and Find Full Text PDF

Titanium alloys are widely used in the manufacture of orthopedic prosthesis given their excellent mechanical properties and biocompatibility. However, the primary drawbacks of traditional titanium alloy prosthesis are their much higher elastic modulus than cancellous bone and poor interfacial adhesion, which lead to poor osseointegration. 3D-printed porous titanium alloys can partly address these issues, but their bio-inertness still requires modifications to adapt to different physiological and pathological microenvironments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!