Concanavalin A (con A), a lectin which specifically interacts with aD-mannose and aD-glucose, has a neutralizing effect on the explants of the early gastrula ectoderm of several amphibian species. Consequently, it was interesting to study con A-binding protein spectrum of the ectoderm and compare it to those of other early gastrula tissues. Animal pole ectoderm (APE), dorsal blastopore lip (DBL) and vegetal pole endoderm (VPE) were dissected from early gastrulae of Rana temporaria and Xenopus laevis. The extracts were subjected to SDS-PAGE with subsequent immunoelectroblotting on nitrocellulose membranes. The blots were sequentially treated with con A solution, horseradish peroxidase and diaminobenzidine. Spectra of the con A-binding glycoproteins were similar in APE, DBL and VPE of R. temporaria. Ten-twelve fractions with the molecular weight in the range from 30 to 150 kDa were stained in each blot. Fractions with the molecular weight of 150, 125, 104, 94 and 42 kDa showed more prominent lectin binding. Con A-binding protein spectra remained unchanged after freezing-thawing of the studied extracts, as well as after blots were treated with neuraminidase or sulphuric acid in order to remove sialic acid residues; the only exception was 42 kDa fraction. At the same time, a-methyl-D-mannoside pyranoside completely blocked con A binding by fractions of the studied extracts. In histological sections of R. temporaria early gastrula, all cells bound FITC-labelled con A. Similar data were obtained with tissues of X. laevis early gastrula. While electrophoretic pattern of X. laevis tissues drastically differed from that of R. temporaria, there were no significant differences between con A-binding protein spectra of X. laevis APE, DBL or VPE. Thus, all studied tissues of the amphibian early gastrula contain similar set of con A-binding proteins; however, only APE is capable of neutralization in response to con A action. These data favor our earlier assumption (see Mikhaĭlov et al., 1989) that con A reception and transmission of the corresponding signal do not determine the characteristics of the target cells response. APE, DBL and VPE extracts were assayed also for the presence of a protein similar to cytokeratin No. 8 characteristic of simple epithelia of mammals. Experiments were performed using immunoelectroblotting with monoclonal antibodies (mAB) against cytokeratin No. 8 from rat colon (mAB E2 and E7 kindly supplied by Dr. G. A. Bannikov). In R. temporaria embryos, cytokeratin 8 was detected in APE, but not in DBL or VPE. In X. laevis gastrulae all the tissues studied contained this cytokeratin.
Download full-text PDF |
Source |
---|
Development
January 2025
Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.
Emerging evidence suggests that the nuclear pore complex can have unique compositions and distinct nucleoporin functions in different cells. Here, we show that Nup107, a key component of the NPC scaffold, varies in expression over development: it is expressed at higher levels in the blastula compared to the gastrula suggesting a critical role prior to gastrulation. We find depletion of Nup107 affects the differentiation of the early germ layers leading to an expansion of the ectoderm at the expense of endoderm and mesoderm.
View Article and Find Full Text PDFDev Growth Differ
January 2025
Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
From September 16 to 19, 2024, an international symposium to celebrate the centennial of the discovery of the gastrula organizer by Hans Spemann and Hilde Mangold, was held at the University of Freiburg, Germany, where they studied embryology. There were 41 plenary lectures, 11 short talks, and 182 poster presentations, with more than 300 participants from 23 countries. The symposium covered research topics broadly related to developmental, cell, genome, and evolutionary biology, mainly focused on early animal development.
View Article and Find Full Text PDFEarly embryo development features autonomous, maternally-driven cell divisions that self- organize the multicellular blastula or blastocyst tissue. Maternal control cedes to the zygote starting with the onset of widespread zygotic genome activation (ZGA), which is essential for subsequent cell fate determination and morphogenesis. Intriguingly, although the onset of ZGA is highly regulated at the level of an embryo, it can be non-homogenous and precisely patterned at the single-cell level.
View Article and Find Full Text PDFCells Dev
December 2024
Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK; Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile. Electronic address:
Morphogenetic movements and specification of germ layers during gastrulation are key processes that establish the vertebrate body plan. Despite substantial research into the role of tissue mechanics during gastrulation and detailed characterisation of the molecular signalling networks controlling fate determination, the interplay of mechanical cues and biochemical signals during fate specification is poorly understood. Morphogens that activate Activin/Nodal/Smad2 signalling play a key role in mesoderm induction and axial patterning.
View Article and Find Full Text PDFDevelopment
November 2024
EMBL Barcelona, 08003 Barcelona, Spain.
Minimal in vitro systems composed of embryonic stem cells (ESCs) have been shown to recapitulate the establishment of the anteroposterior (AP) axis. In contrast to the native embryo, ESC aggregates - such as gastruloids - can break symmetry, which is demarcated by polarization of the mesodermal marker T, autonomously without any localized external cues. However, associated earliest patterning events, such as the spatial restriction of cell fates and concomitant transcriptional changes, remain poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!