In Arabidopsis recombinant inbred line (RIL) populations are widely used for quantitative trait locus (QTL) analyses. However, mapping analyses with this type of population can be limited because of the masking effects of major QTL and epistatic interactions of multiple QTL. An alternative type of immortal experimental population commonly used in plant species are sets of introgression lines. Here we introduce the development of a genomewide coverage near-isogenic line (NIL) population of Arabidopsis thaliana, by introgressing genomic regions from the Cape Verde Islands (Cvi) accession into the Landsberg erecta (Ler) genetic background. We have empirically compared the QTL mapping power of this new population with an already existing RIL population derived from the same parents. For that, we analyzed and mapped QTL affecting six developmental traits with different heritability. Overall, in the NIL population smaller-effect QTL than in the RIL population could be detected although the localization resolution was lower. Furthermore, we estimated the effect of population size and of the number of replicates on the detection power of QTL affecting the developmental traits. In general, population size is more important than the number of replicates to increase the mapping power of RILs, whereas for NILs several replicates are absolutely required. These analyses are expected to facilitate experimental design for QTL mapping using these two common types of segregating populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1800614PMC
http://dx.doi.org/10.1534/genetics.106.066423DOI Listing

Publication Analysis

Top Keywords

population arabidopsis
12
mapping power
12
population
11
arabidopsis thaliana
8
recombinant inbred
8
qtl
8
nil population
8
qtl mapping
8
ril population
8
qtl developmental
8

Similar Publications

Deciphering the Genetic Basis of Sugar Cane ( L) Root System and Related Traits under Nitrogen Stress through the Integration of Genome-Wide Association Studies and RNA-seq.

J Agric Food Chem

January 2025

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530005, China.

Nitrogen (N) is an essential element for plant growth and development. Identifying functional gene loci associated with nitrogen absorption and utilization in sugar cane can facilitate the development of nutrient-efficient sugar cane varieties. In this study, sugar cane seedlings were subjected to normal and low nitrogen stress treatments within a hydroponic system for the identification of candidate genes related to six root-associated traits using a diversity population of 297 accessions.

View Article and Find Full Text PDF

Ensuring food security is one of the main challenges related to a growing global population under climate change conditions. The increasing soil salinity levels, drought, heatwaves, and late chilling severely threaten crops and often co-occur in field conditions. This work aims to provide deeper insight into the impact of single vs.

View Article and Find Full Text PDF

Genomic prediction applies to any agro- or ecologically relevant traits, with distinct ontologies and genetic architectures. Selecting the most appropriate model for the distribution of genetic effects and their associated allele frequencies in the training population is crucial. Linear regression models are often preferred for genomic prediction.

View Article and Find Full Text PDF

Epigenetics in the modern era of crop improvements.

Sci China Life Sci

January 2025

State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.

Epigenetic mechanisms are integral to plant growth, development, and adaptation to environmental stimuli. Over the past two decades, our comprehension of these complex regulatory processes has expanded remarkably, producing a substantial body of knowledge on both locus-specific mechanisms and genome-wide regulatory patterns. Studies initially grounded in the model plant Arabidopsis have been broadened to encompass a diverse array of crop species, revealing the multifaceted roles of epigenetics in physiological and agronomic traits.

View Article and Find Full Text PDF

Gamete killers are genetic loci that distort segregation in the progeny of hybrids because the killer allele promotes the elimination of the gametes that carry the sensitive allele. They are widely distributed in eukaryotes and are important for understanding genome evolution and speciation. We had previously identified a pollen killer in hybrids between two distant natural accessions of Arabidopsis thaliana.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!