A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Epac-mediated activation of phospholipase C(epsilon) plays a critical role in beta-adrenergic receptor-dependent enhancement of Ca2+ mobilization in cardiac myocytes. | LitMetric

Recently we demonstrated that PLC(epsilon) plays an important role in beta-adrenergic receptor (betaAR) stimulation of Ca(2+)-induced Ca(2+) release (CICR) in cardiac myocytes. Here we have reported for the first time that a pathway downstream of betaAR involving the cAMP-dependent Rap GTP exchange factor, Epac, and PLC(epsilon) regulates CICR in cardiac myocytes. To demonstrate a role for Epac in the stimulation of CICR, cardiac myocytes were treated with an Epac-selective cAMP analog, 8-4-(chlorophenylthio)-2'-O-methyladenosine-3',5'-monophosphate (cpTOME). cpTOME treatment increased the amplitude of electrically evoked Ca(2+) transients, implicating Epac for the first time in cardiac CICR. This response is abolished in PLC(epsilon)(-/-) cardiac myocytes but rescued by transduction with PLC(epsilon), indicating that Epac is upstream of PLC(epsilon). Furthermore, transduction of PLC(epsilon)(+/+) cardiac myocytes with a Rap inhibitor, RapGAP1, significantly inhibited isoproterenol-dependent CICR. Using a combination of cpTOME and PKA-selective activators and inhibitors, we have shown that betaAR-dependent increases in CICR consist of two independent components mediated by PKA and the novel Epac/(epsilon) pathway. We also show that Epac/PLC(epsilon)-dependent effects on CICR are independent of sarcoplasmic reticulum loading and Ca(2+) clearance mechanisms. These data define a novel endogenous PKA-independent betaAR-signaling pathway through cAMP-dependent Epac activation, Rap, and PLC(epsilon) that enhances intracellular Ca(2+) release in cardiac myocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M608495200DOI Listing

Publication Analysis

Top Keywords

cardiac myocytes
28
cicr cardiac
12
role beta-adrenergic
8
cardiac
8
ca2+ release
8
myocytes
7
cicr
7
ca2+
5
plcepsilon
5
epac
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!