Porous microparticles (PMs) with a low density (<0.4 g/cm3) for pulmonary protein delivery were prepared by the water-in-oil-in-water (W1/O/W2) multi-emulsion method using a cyclodextrin derivative as a porogen. The complexation of positively charged lysozyme (Lys) and negative-charged hyaluronate (HA) was investigated for long-term protein release from PMs. The interaction of Lys and HA not only increased protein encapsulation efficiency but also stabilized Lys against a denaturing organic solvent (dichloromethane). Furthermore, PMs with Lys/HA complexes increased the Lys release period up to 7 days, as opposed to a 4h Lys release time from PMs without Lys/HA complexes. In particular, PMs containing 10mg of HA and 50mg of Lys showed almost zero-order Lys release kinetic for 7 days and preserved the bioactivity of Lys more than 98% during its entire release period. This result suggests that PMs with Lys/HA complexes may be applied in long-term pulmonary administration of protein or peptide drugs, including those that require particles to arrive at a deep lung epithelium with the help of low density (high porosity) of PMs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2006.11.024 | DOI Listing |
Br J Radiol
January 2025
Division of Nuclear Medicine and Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
Theranostics has its roots with the first radioiodine therapy for thyroid diseases in about 80 years ago. More recently the field has experienced a remarkable renascence with the regulatory approval of paired imaging and radiopharmaceutical therapy agents in gastroenteropancreatic neuroendocrine tumors and metastatic castration-resistant prostate cancer that are now employed in routine clinical practice. The momentum is strong for identification and testing of new theranostic agents for use in various cancers and finding new clinical incications of the available agents.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of Macromolecular Cancer Therapeutics (MMCT), University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
Splice-switching oligonucleotides (SSOs) can restore protein functionality in pathologies and are promising tools for manipulating the RNA-splicing machinery. Delivery vectors can considerably improve SSO functionality in vivo and allow dose reduction, thereby addressing the challenges of RNA-targeted therapeutics. Here, we report a biocompatible SSO nanocarrier, based on redox-responsive disulfide cross-linked low-molecular-weight linear polyethylenimine (cLPEI), for overcoming multiple biological barriers from subcellular compartments to en-route serum stability and finally in vivo delivery challenges.
View Article and Find Full Text PDFRadiology
January 2025
From the Departments of Radiology (V.K., A.R., P.D.) and Pathology (J.N.), University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205.
A 61-year-old male patient without prior history of ophthalmologic problems presented with pain and redness in the left eye associated with slowly progressive proptosis over the previous 6 months. The patient also had diplopia in rightward and downward gaze. There was no vision loss.
View Article and Find Full Text PDFInt Angiol
December 2024
Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA -
The glycocalyx is an essential structural and functional component of endothelial cells. Extensive hemodynamic changes cause endothelial glycocalyx disruption and vascular dysfunction, leading to multiple arterial and venous disorders. Chronic venous disease (CVD) is a common disorder of the lower extremities with major health and socio-economic implications, but complex pathophysiology.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
This study aimed to investigate the digestion and absorption properties of caprine milk serum proteins in comparison to human and bovine species by using rat pups to mimic preterm infants. The results indicate that caprine lactoferrin (LTF) had a shorter retention time in the intestine and released a greater number of fragments, resembling human milk LTF more closely. In contrast, caprine immunoglobulins (Igs) were similar to bovine Igs and both exhibited a longer retention time in the intestine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!