The C-terminus of the Galpha-subunit of transducin plays an important role in receptor recognition. Synthetic peptides corresponding to the last 11 residues of the subunit have been shown to stabilize the photoactivated form of rhodopsin, Rh*. The Rh*-bound structure of the G(t)alpha(340-350) peptide has been determined using transferred nuclear overhauser effect NMR. In that structure, we observed two interactions between Lys341 and Phe350, a cation-pi interaction between the epsilon-amine and the aromatic ring of Phe350 and a salt-bridge between the epsilon-amine and the C-terminal carboxylate. A series of C-terminal phenethylamine analogs of the G(t)alpha(340-350) peptide were synthesized, lacking the C-terminal carboxylate group, to investigate the forces that contribute to the stability of the Rh*-bound conformation of the peptide. Rh*-stabilization assay data suggest that the C-terminal carboxylate is not necessary to maintain binding affinity. Transferred nuclear overhauser effect NMR experiments reveal that these C-terminal phenethylamine peptides adopt an Rh*-bound structure that is similar overall, but lacking some of the intramolecular interactions observed in the native Rh*-bound G(t)alpha(340-350) structure. These studies suggest that the binding site for G(t)alpha(340-350) on Rh* is adaptable, and we propose that the charged carboxylate of Phe350 does not play a significant role in the interaction with Rh*, but helps stabilize the Rh*-bound confirmation of the native peptide.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1747-0285.2006.00460.xDOI Listing

Publication Analysis

Top Keywords

c-terminal phenethylamine
12
c-terminal carboxylate
12
phenethylamine analogs
8
analogs gtalpha340-350
8
rh*-bound structure
8
gtalpha340-350 peptide
8
transferred nuclear
8
nuclear overhauser
8
overhauser nmr
8
c-terminal
6

Similar Publications

Targeting A and p-Tau Clearance in Methamphetamine-Induced Alzheimer's Disease-Like Pathology: Roles of Syntaxin 17 in Autophagic Degradation in Primary Hippocampal Neurons.

Oxid Med Cell Longev

June 2022

Key Lab of Modern Toxicology (NJMU), Ministry of Education; Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu 211166, China.

Methamphetamine (Meth), a central nervous system (CNS) stimulant with strong neurotoxicity, causes progressive cognitive impairment with characterized neurodegenerative changes. However, the mechanism underlying Meth-induced pathological changes remains poorly understood. In the current study, Meth elicited a striking accumulation of the pathological proteins hyperphosphorylated tau (p-tau) and amyloid beta (A) in primary hippocampal neurons, while the activation of autophagy dramatically ameliorated the high levels of these pathological proteins.

View Article and Find Full Text PDF

Repeated injections of psychomotor stimulants like amphetamine (AMPH) to rodents can induce behavioral sensitization, which represents a long-lasting craving that is usually observed in human addicts. Behavioral sensitization is characteristically maintained for a long duration, accompanied by structural plasticity in some brain areas involved in reward circuitry. For example, it increased dendritic spine densities in the nucleus accumbens (NAcc), which is considered to reflect neurophysiological changes at this site, leading to addictive behaviors.

View Article and Find Full Text PDF

Agonist-promoted kappa opioid receptor (KOR) phosphorylation has behavioral endpoint-dependent and sex-specific effects.

Neuropharmacology

January 2022

Center for Substance Abuse Research (CSAR) & Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, 3500 Broad Street, Philadelphia, PA, 19140, USA. Electronic address:

We reported previously that the selective agonist U50,488H promoted phosphorylation of the mouse kappa opioid receptor (mKOR) in vitro at four residues in the C-terminal domain. In this study, we generated a mutant mouse line in which all the four residues were mutated to Ala (K4A) to examine the in vivo functional significance of agonist-induced KOR phosphorylation. U50,488H promoted KOR phosphorylation in brains of the wildtype (WT), but not K4A, male and female mice.

View Article and Find Full Text PDF

Synthesis of paramagnetic ligands that target the C-terminal binding site of Hsp90.

Bioorg Med Chem Lett

August 2020

Department of Chemistry and Biochemistry, University of Notre Dame, IN, USA. Electronic address:

Identification of a ligand binding site represents the starting point for a structure-based drug development program. Lack of a binding site hampers the development of improved ligands that modulate the protein of interest. In this letter, we describe the development of chemical tools that will allow for elucidation of the Hsp90 C-terminal ligand binding site.

View Article and Find Full Text PDF

Protein tyrosine phosphatase receptor type Z (PTPRZ) is preferentially expressed in the central nervous system as two transmembrane receptor isoforms PTPRZ-A/B and one secretory isoform PTPRZ-S. Ptprz-knockout mice lacking the expression of all three isoforms show behavioral, learning, and neurological abnormalities, including increased exploratory activities to novelty, deficits in spatial and contextual learning, and reduced responses to methamphetamine, relative to wild-type mice. To investigate whether PTPRZ isoforms play distinct physiological roles, we herein performed behavioral studies on two knock-in mouse lines: One expresses the catalytically inactive Cys-1930 to Ser (CS) mutants of PTPRZ-A/B, while the other generated in the present study expresses catalytically active mutants of PTPRZ-A/B lacking the negative regulatory PTP-D2 domain and C-terminal PDZ-binding motif (ΔD2) instead of wild-type PTPRZ-A/-B.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!