A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Regulation and manipulation of ABA biosynthesis in roots. | LitMetric

Overexpression of 9-cis-epoxycarotenoid dioxygenase (NCED) is known to cause abscisic acid (ABA) accumulation in leaves, seeds and whole plants. Here we investigated the manipulation of ABA biosynthesis in roots. Roots from whole tomato plants that constitutively overexpress LeNCED1 had a higher ABA content than wild-type (WT) roots. This could be explained by enhanced in situ ABA biosynthesis, rather than import of ABA from the shoot, because root cultures also had higher ABA content, and because tetracycline (Tc)-induced LeNCED1 expression caused ABA accumulation in isolated tobacco roots. However, the Tc-induced expression led to greater accumulation of ABA in leaves than in roots. This demonstrates for the first time that NCED is rate-limiting in root tissues, but suggests that other steps were also restrictive to pathway flux, more so in roots than in leaves. Dehydration and NCED overexpression acted synergistically in enhancing ABA accumulation in tomato root cultures. One explanation is that xanthophyll synthesis was increased during root dehydration, and, in support of this, dehydration treatments increased beta-carotene hydroxylase mRNA levels. Whole plants overexpressing LeNCED1 exhibited greatly reduced stomatal conductance and grafting experiments from this study demonstrated that this was predominantly due to increased ABA biosynthesis in leaves rather than in roots. Genetic manipulation of both xanthophyll supply and epoxycarotenoid cleavage may be needed to enhance root ABA biosynthesis sufficiently to signal stomatal closure in the shoot.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-3040.2006.01606.xDOI Listing

Publication Analysis

Top Keywords

aba biosynthesis
20
aba
12
aba accumulation
12
manipulation aba
8
roots
8
biosynthesis roots
8
higher aba
8
aba content
8
root cultures
8
leaves roots
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!