Background: Alternaria alternata is one of the most important allergenic fungi worldwide. Mannitol dehydrogenase (MtDH) has previously been shown to be a major allergen of Cladosporium herbarum and cross-reactivity has been demonstrated for several fungal allergens.

Objective: The present study's objective was to clone the MtDH from an A. alternata cDNA library, express and purify the recombinant non-fusion protein and test its IgE-binding properties. Methods A cDNA library prepared from A. alternata hyphae and spores was screened for mannitol dehydrogenase by DNA hybridization with the radioactively labelled C. herbarum homologue as a probe. The resulting clone was sequenced and heterologously expressed in Escherichia coli as a recombinant non-fusion protein, which was purified to homogeneity and analysed for its IgE-binding capacity.

Results: The coding sequence of the full-length cDNA clone comprises 798 bp encoding a protein with a molecular mass of 28.6 kDa and a predicted pI of 5.88. Protein sequence analysis revealed an identity of 75% and a homology of 86% between the MtDHs of A. alternata and C. herbarum. The functional mannitol dehydrogenase was expressed in the E. coli strain BL21(DE3) transformed with the vector pMW172 and purified to homogeneity. The enzyme catalyses the NADPH-dependent conversion of d-fructose to d-mannitol. In IgE-ELISA and immunoblots, MtDH is recognized by 41% of A. alternata-allergic patients. In vivo immunoreactivity of the recombinant MtDH was verified by skin prick testing. Finally, inhibition-ELISA experiments confirmed cross-reactivity between the MtDHs of A. alternata and C. herbarum.

Conclusion: Mannitol dehydrogenase (Alt a 8) represents an important new allergen of the ascomycete A. alternata that might be suitable for improving diagnostic and therapeutic procedures.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2222.2006.02582.xDOI Listing

Publication Analysis

Top Keywords

mannitol dehydrogenase
20
alternaria alternata
8
cdna library
8
recombinant non-fusion
8
non-fusion protein
8
purified homogeneity
8
mtdhs alternata
8
alternata
6
mannitol
5
dehydrogenase
5

Similar Publications

Cannabinoid and stilbenoid compounds derived from were screened against eight specific fungal protein targets to identify potential antifungal agents. The proteins investigated included Glycosylphosphatidylinositol (GPI), Enolase, Mannitol-2-dehydrogenase, GMP synthase, Dihydroorotate dehydrogenase (DHODH), Heat shock protein 90 homolog (Hsp90), Chitin Synthase 2 (CaChs2), and Mannitol-1-phosphate 5-dehydrogenase (M1P5DH), all of which play crucial roles in fungal survival and pathogenicity. This research evaluates the binding affinities and interaction profiles of selected cannabinoids and stilbenoids with these eight proteins using molecular docking and molecular dynamics simulations.

View Article and Find Full Text PDF

Unlabelled: The ability to treat infections is threatened by the rapid emergence of antibiotic resistance among pathogenic microbes. Therefore, new antimicrobials are needed. Here we evaluate mannitol-1-phosphate 5-dehydrogenase (MtlD) as a potential new drug target.

View Article and Find Full Text PDF

Anticancer drugs cause anemia in patients through eryptosis and hemolysis. We thus studied the in vitro toxicity of galangin (GAL) in red blood cells (RBCs). RBCs were exposed to 50-500 μM of GAL and analyzed for markers of eryptosis and hemolysis.

View Article and Find Full Text PDF

Sugar alcohol degradation in Archaea: uptake and degradation of mannitol and sorbitol in Haloarcula hispanica.

Extremophiles

October 2024

Institut Für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany.

The halophilic archaeon Haloarcula hispanica utilizes the sugar alcohols mannitol and sorbitol as carbon and energy sources. Genes, enzymes, and transcriptional regulators involved in uptake and degradation of these sugar alcohols were identified by growth experiments with deletion mutants and enzyme characterization. It is shown that both mannitol and sorbitol are taken up via a single ABC transporter of the CUT1 transporter family.

View Article and Find Full Text PDF

Bacterial cellulose synthesis from defined media and waste products has attracted increasing interest in the circular economy context for sustainable productions. In this study, a glucose dehydrogenase-deficient Δgdh K2G30 strain of Komagataeibacter xylinus was obtained from the parental wild type through homologous recombination. Both strains were grown in defined substrates and cheese whey as an agri-food waste to assess the effect of gene silencing on bacterial cellulose synthesis and carbon source metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!