Changeover during in situ compositional modulation of hexacyanoferrate (Prussian Blue) material.

J Am Chem Soc

Instituto de Química, Departamento de Físico-Química, Universidade Estadual Paulista, 14801-907 Araraquara, São Paulo, Brazil.

Published: December 2006

This paper describes the importance of (H2O)6 clusters in controlling the properties of hexacyanoferrate (Prussian Blue) materials. A careful in situ study of compositional changes by using electrogravimetric techniques (in ac and dc modes) in hexacyanoferrates containing K+ alkali metals reveals the existence of a changeover in the properties of these films in a narrow potential range. Control of the compositional variation of the changeover is dependent on the K+ stoichiometric number in the compound structure. However, a specific K+ occupation in the compound structure activates the occupation of the (H2O)6 cluster by H3O+ and/or H+, causing the changeover in the properties of hexacyanoferrate film. Thus, the information thus obtained is very useful for understanding the mechanisms involved in the electrochemical reversible switch between ferrimagnetism/paramagnetism, "semiconductor/metal" and electroluminescence/nonelectroluminescence properties of molecular cyanide materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja066982aDOI Listing

Publication Analysis

Top Keywords

hexacyanoferrate prussian
8
prussian blue
8
properties hexacyanoferrate
8
changeover properties
8
compound structure
8
changeover
4
changeover situ
4
situ compositional
4
compositional modulation
4
modulation hexacyanoferrate
4

Similar Publications

The Mn-based Prussian blue analogs (PBAs) have garnered significant attention due to their high specific capacity, stemming from the unique multi-electron reactions with Na. However, the structural instability caused by multi-ion insertion impacts the cycle life, thus limiting their further application in aqueous sodium-ion batteries (ASIBs). To address this issue, this work employed an in situ epitaxial solvent deposition method to homogeneously grow Ni hexacyanoferrate (NiHCF) on the surface of MnPBA, which can effectively overcome the de-intercalation instability.

View Article and Find Full Text PDF

Cobalt Hexacyanoferrate Cathode with Stable Structure and Fast Kinetics for Aqueous Zinc-Ion Batteries.

ACS Appl Mater Interfaces

January 2025

Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xìan, Shaanxi 710049, China.

Prussian blue analogues (PBAs) show great promise as cathode candidates for aqueous zinc-ion batteries thanks to their high operating voltage, open-framework structure, and low cost. However, suffering from numerous vacancies and crystal water, the electrochemical performance of PBAs remains unsatisfactory, with limited capacity and poor cycle life. Here, a simple coprecipitation method is shown to synthesize well-crystallized cobalt hexacyanoferrate (CoHCF) with a small amount of water and high specific surface area.

View Article and Find Full Text PDF

Modification of Cells with Metal Hexacyanoferrates for the Construction of a Yeast-Based Fuel Cell.

Molecules

January 2025

Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania.

This research presents a simple procedure for chemically modifying yeast () cells with nickel hexacyanoferrate (NiHCF) and ferric hexacyanoferrate, also known as Prussian blue (PB), to increase the conductivity of the yeast cell wall. Using linear sweep voltammetry, NiHCF-modified yeast and PB-modified yeast (NiHCF/yeast and PB/yeast, respectively) were found to have better cell wall conductivity in [Fe(CN)] and glucose-containing phosphate-buffered solution than unmodified yeast. Spectrophotometric analysis showed that the modification of yeast cells with NiHCF had a less harmful effect on yeast cell viability than the modification of yeast cells with PB.

View Article and Find Full Text PDF

In Situ Balanced Synthesis of High-Activity Low-Spin Iron Cathode Prussian Blue for Enhanced Sodium-Ion Storage.

Nano Lett

January 2025

Key Laboratory of Advanced Structural Materials, Ministry of Education, and School of Materials Science and Engineering, Changchun University of Technology, Changchun 130012, China.

The growing market for sodium-ion batteries has stimulated interest in research on Prussian blue-type cathode materials. Iron hexacyanoferrate (FeHCF) is considered a desirable Prussian blue-type cathode, but the incomplete electrochemical property of its low-spin iron sites hinders its further practical application. In this paper, carboxymethyl cellulose is demonstrated to have an appropriate binding energy through DFT calculations, synthesize Prussian blue in situ, balance Fe and water in FeHCF, and introduce Fe vacancies to activate low-spin Fe sites.

View Article and Find Full Text PDF

Inner Helmholtz layer control through co-solvent strategies for high-performance copper hexacyanoferrate//zinc battery.

J Colloid Interface Sci

December 2024

Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW., Edmonton, Alberta T6G 1H9, Canada. Electronic address:

Copper hexacyanoferrate (CuHCF) demonstrates high working voltage, convenient synthesis methods, and economic benefits. However, capacity decay of CuHCF//Zn full cells is usually observed in aqueous electrolytes due to the dissolution of Cu and Fe, as indicated by the irreversible insertion of Zn ions and the consequent formation of ZnCuHCF. To address these challenges, a cathode-oriented electrolyte engineering design employing a methyl acetate (MA) co-solvent with zinc triflate (Zn(OTf)) salt electrolyte is implemented.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!