Chiral photocages based on phthalimide photochemistry.

J Am Chem Soc

Institute of Organic Chemistry, University of Cologne, Greinstrasse 4, D-50939 Köln, Germany.

Published: December 2006

A new class of photoremovable protecting groups, based on a photoinduced decarboxylation reaction coupled with the elimination of the caged molecule, is described for 2-phthalimido-3-hydroxy-propionate derivatives. When derived from enantiopure N-phthaloyl- serine or threonine, the chirality of the starting amino acid is transmitted to the protected (caged) molecule. These photocages possess good properties for their use in biological systems, and the introduction of chirality opens new possibilities for the study of diastereoselective photochemistry and stereodifferentiation processes involving the release of the caged molecule.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja066582nDOI Listing

Publication Analysis

Top Keywords

caged molecule
12
chiral photocages
4
photocages based
4
based phthalimide
4
phthalimide photochemistry
4
photochemistry class
4
class photoremovable
4
photoremovable protecting
4
protecting groups
4
groups based
4

Similar Publications

Engineered light-sensitive molecules offer a sophisticated toolkit for the manipulation of biological systems with both spatial and temporal precision. Notably, artificial "caged" compounds can activate specific receptors solely in response to light exposure. However, the uncaging process can lead to the formation of potentially harmful byproducts.

View Article and Find Full Text PDF

This study investigates the formation of carbon dioxide clathrate hydrates under conditions simulating interstellar environments, a process of significant astrophysical and industrial relevance. Clathrate hydrates, where gas molecules are trapped within water ice cages, play an essential role in both carbon sequestration strategies and understanding of the behavior of ices in space. We employed a combination of Fourier Transform Infrared (FTIR) spectroscopy, mass spectrometry, temperature-programmed desorption (TPD), and Density Functional Theory (DFT) calculations to explore thin films of HO:CO ice mixtures with varying CO concentrations (5-75%) prepared by vapor deposition at temperatures ranging between 11 and 180 K.

View Article and Find Full Text PDF

Control of Interlocking Mode in PdL Cage Catenanes.

Angew Chem Int Ed Engl

January 2025

Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany.

Precise control over the catenation process in interlocked supramolecular systems remains a significant challenge. Here, we report a system in which a lantern-shaped PdL cage can dimerize to form two distinct PdL catenanes with different interlocking degree: a previously described quadruply interlocked double cage motif of D symmetry and an unprecedented triply interlocked structure of C symmetry. While the former structure features a linear arrangement of four Pd(II) centers, separated by three mechanically linked pockets, the new motif has a staggered shape.

View Article and Find Full Text PDF

The effect of the aqueous extract of (AAI) on gentamicin (GEN)-induced kidney injury was investigated. The study involves 20 adult male Wistar rats (housed in four separate plastic cages) such that graded dosages of AAI were administered to the experimental group for 14 days per oral (PO) before exposure to GEN toxicity (100 mg/kg) for 1 week. At the end of the study, comparisons of some markers of renal functions, antioxidant status, and inflammatory and apoptotic markers were made between the control, GEN, and AAI-pretreated groups at < .

View Article and Find Full Text PDF

Integrating two or more materials to construct membranes with heterogeneous pore structures is an effective strategy for enhancing separation performance. Regularly arranging these heterogeneous pores can significantly optimize the combined effect of the introduced components. Porous Organic Cages (POCs), an emerging subclass of porous materials composed of discrete molecules, assemble to form interconnected pores and exhibit permanent porosity in the solid state.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!