In this study, we successfully developed three-dimensional scaffolds fabricated from the chitosan-based hyaluronic acid hybrid polymer fibers, which can control the porous structure. To determine the adequate pore size for enhancing the chondrogenesis of cultured cells, we compared the behaviors of rabbit chondrocytes in scaffolds comprising different pore sizes (100, 200, and 400 microm pore size). Regarding the cell proliferation, there was no significant difference among the three groups. On the other hand, glycosaminoglycan contents in the 400 microm group significantly increased during the culture period, compared with those in the other groups. The ratio of type II to type I collagen mRNA level was also significantly higher in the 400 microm group than in the other groups. These results indicate that our scaffold with 400 microm pore size significantly enhances the extracellular matrix synthesis by chondrocytes. Additionally, the current scaffolds showed high mechanical properties, compared with liquid and gel materials. The data derived from this study suggest great promise for the future of a novel fabricated material with relatively large pore size as a scaffold for cartilage regeneration. The biological and mechanical advantages presented here will make it possible to apply our scaffold to relatively wide cartilaginous lesions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.31095DOI Listing

Publication Analysis

Top Keywords

pore size
20
400 microm
16
chitosan-based hyaluronic
8
hyaluronic acid
8
acid hybrid
8
hybrid polymer
8
polymer fibers
8
microm pore
8
microm group
8
pore
6

Similar Publications

The swift rise of hazardous dye effluent from diverse sectors continues to be a severe public health problem and a top priority for environmental preservation, presenting a significant obstacle to the current conventional water treatment systems. This study aims to develop an efficient and reusable approach for removing cresyl fast violet dye using mullite nanoparticles. Some factors such as pH, nano-mullite dosage, agitation speed, time, and others that affect the removal process were studied.

View Article and Find Full Text PDF

Wastewater contamination by organic dyes, especially Rhodamine B (RhB), possess a significant environmental challenge. This study explores a novel bio sorbent for the removal of RhB dye from contaminated water, using chitosan trisodium citrate-modified magnetic nanoparticles (Fe₃O₄@CSTSC@PANI) coated with polyaniline. The nanocomposite was characterized by FT-IR, XRD, HRTEM, SEM, BET surface analysis.

View Article and Find Full Text PDF

Resource utilization of waste solar photovoltaic panels for preparation of microporous silicon nanoparticles.

Waste Manag

December 2024

College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.

With the exponential growth of global photovoltaic (PV) installed capacity, the quantity of discarded PV modules continues to rise. This study innovatively explored the sustainable recovery and utilization of raw materials from discarded solar panels, focusing on the transformation of recycled silicon into microporous silica nanoparticles (MSN). Low toxic organic solvent ethyl acetate (EA) was for the first time utilized to reduce the viscosity of ethylene-vinyl acetate (EVA) and facilitated its removal.

View Article and Find Full Text PDF

In this study, high performance porous starch was prepared by combining freeze-thawing and enzymatic hydrolysis with the aim of evaluating its potential as a starch emulsifier in Pickering emulsions. The results indicate that the combined treatment significantly altered the specific surface area of starch (from 0.3257 m/g to 1.

View Article and Find Full Text PDF

The advancement in the arena of bone tissue engineering persuades us to develop novel nanocomposite scaffolds in order to improve antibacterial, osteogenic, and angiogenic properties that show resemblance to natural bone extracellular matrix. Here, we focused on the development of novel zinc-doped hydroxyapatite (ZnHAP) nanoparticles (1, 2 and 3 wt%; size: 50-60 nm) incorporated chitosan-gelatin nanocomposite scaffold, with an interconnected porous structure. The addition of ZnHAP nanoparticles decreases the pore size (~30 µm) of the chitosan gelatin scaffold.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!