Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Photofragment translational spectroscopy was used to identify the primary and secondary reaction pathways in 193 nm photodissociation of chlorine azide (ClN(3)) under collision-free conditions. Both the molecular elimination (NCl+N(2)) and the radical bond rupture channel (Cl+N(3)) were investigated and compared with earlier results at 248 nm. The radical channel strongly dominates, just as at 248 nm. At 193 nm, the ClN(3) (C (1)A(")) state is excited, rather than the B (1)A(') state that is accessed at 248 nm, resulting in different photofragment angular distributions. The chlorine translational energy distribution probing the dynamics of the radical bond rupture channel shows three distinct peaks, with the two fastest peaks occurring at the same translational energies as the two peaks seen at 248 nm that were previously assigned to linear and "high energy" N(3). Hence, nearly all the additional photon energy relative to 248 nm appears as N(3) internal excitation rather than as translational energy, resulting in considerably more spontaneous dissociation of N(3) to N(2)+N.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.2400854 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!